Lượng giác Ví dụ

Tìm Biên Độ, Chu Kỳ, và Sự Dịch Chuyển Pha f(x)=sin(3x-2pi)
f(x)=sin(3x-2π)
Bước 1
Sử dụng dạng asin(bx-c)+d để tìm các biến được sử dụng để tìm biên độ, chu kỳ, độ lệch pha, và sự dịch chuyển dọc.
a=1
b=3
c=2π
d=0
Bước 2
Tìm biên độ |a|.
Biên độ: 1
Bước 3
Tìm chu kỳ của sin(3x-2π).
Nhấp để xem thêm các bước...
Bước 3.1
Chu kỳ của hàm số có thể được tính bằng 2π|b|.
2π|b|
Bước 3.2
Thay thế b với 3 trong công thức cho chu kỳ.
2π|3|
Bước 3.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa 033.
2π3
2π3
Bước 4
Tìm độ lệch pha bằng công thức cb.
Nhấp để xem thêm các bước...
Bước 4.1
Độ lệch pha của hàm số có thể được tính từ cb.
Độ lệch pha: cb
Bước 4.2
Thay thế các giá trị của cb vào phương trình cho độ lệch pha.
Độ lệch pha: 2π3
Độ lệch pha: 2π3
Bước 5
Liệt kê các tính chất của hàm lượng giác.
Biên độ: 1
Chu kỳ: 2π3
Độ lệch pha: 2π3 (2π3 sang bên phải)
Dịch chuyển dọc: Không có
Bước 6
 [x2  12  π  xdx ]