Lượng giác Ví dụ

Giải ? 2sin(x)^2-sin(x)-1=0
Bước 1
Phân tích thành thừa số bằng cách nhóm.
Nhấp để xem thêm các bước...
Bước 1.1
Đối với đa thức có dạng , hãy viết lại số hạng ở giữa là tổng của hai số hạng có tích là và có tổng là .
Nhấp để xem thêm các bước...
Bước 1.1.1
Đưa ra ngoài .
Bước 1.1.2
Viết lại ở dạng cộng
Bước 1.1.3
Áp dụng thuộc tính phân phối.
Bước 1.1.4
Nhân với .
Bước 1.2
Đưa ước số chung lớn nhất từ từng nhóm ra ngoài.
Nhấp để xem thêm các bước...
Bước 1.2.1
Nhóm hai số hạng đầu tiên và hai số hạng cuối.
Bước 1.2.2
Đưa ước số chung lớn nhất (ƯCLN) từ từng nhóm ra ngoài.
Bước 1.3
Phân tích đa thức thành thừa số bằng cách đưa ước số chung lớn nhất ra ngoài, .
Bước 2
Nếu bất kỳ thừa số riêng lẻ nào ở vế trái của phương trình bằng , toàn bộ biểu thức sẽ bằng .
Bước 3
Đặt bằng và giải tìm .
Nhấp để xem thêm các bước...
Bước 3.1
Đặt bằng với .
Bước 3.2
Giải để tìm .
Nhấp để xem thêm các bước...
Bước 3.2.1
Trừ khỏi cả hai vế của phương trình.
Bước 3.2.2
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 3.2.2.1
Chia mỗi số hạng trong cho .
Bước 3.2.2.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 3.2.2.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 3.2.2.2.1.1
Triệt tiêu thừa số chung.
Bước 3.2.2.2.1.2
Chia cho .
Bước 3.2.2.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 3.2.2.3.1
Di chuyển dấu trừ ra phía trước của phân số.
Bước 3.2.3
Lấy nghịch đảo sin của cả hai vế của phương trình để trích xuất từ trong hàm sin.
Bước 3.2.4
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 3.2.4.1
Giá trị chính xác của .
Bước 3.2.5
Hàm sin âm trong góc phần tư thứ ba và thứ tư. Để tìm đáp án thứ hai, hãy trừ đáp án khỏi , để tìm góc tham chiếu. Tiếp theo, cộng góc tham chiếu này vào để tìm đáp án trong góc phần tư thứ ba.
Bước 3.2.6
Rút gọn biểu thức để tìm đáp án thứ hai.
Nhấp để xem thêm các bước...
Bước 3.2.6.1
Trừ khỏi .
Bước 3.2.6.2
Góc tìm được dương, nhỏ hơn , và có chung cạnh cuối với .
Bước 3.2.7
Tìm chu kỳ của .
Nhấp để xem thêm các bước...
Bước 3.2.7.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 3.2.7.2
Thay thế với trong công thức cho chu kỳ.
Bước 3.2.7.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa .
Bước 3.2.7.4
Chia cho .
Bước 3.2.8
Cộng vào mọi góc âm để có được các góc dương.
Nhấp để xem thêm các bước...
Bước 3.2.8.1
Cộng vào để tìm góc dương.
Bước 3.2.8.2
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 3.2.8.3
Kết hợp các phân số.
Nhấp để xem thêm các bước...
Bước 3.2.8.3.1
Kết hợp .
Bước 3.2.8.3.2
Kết hợp các tử số trên mẫu số chung.
Bước 3.2.8.4
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 3.2.8.4.1
Nhân với .
Bước 3.2.8.4.2
Trừ khỏi .
Bước 3.2.8.5
Liệt kê các góc mới.
Bước 3.2.9
Chu kỳ của hàm nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên
, cho mọi số nguyên
, cho mọi số nguyên
Bước 4
Đặt bằng và giải tìm .
Nhấp để xem thêm các bước...
Bước 4.1
Đặt bằng với .
Bước 4.2
Giải để tìm .
Nhấp để xem thêm các bước...
Bước 4.2.1
Cộng cho cả hai vế của phương trình.
Bước 4.2.2
Lấy nghịch đảo sin của cả hai vế của phương trình để trích xuất từ trong hàm sin.
Bước 4.2.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 4.2.3.1
Giá trị chính xác của .
Bước 4.2.4
Hàm sin dương trong góc phần tư thứ nhất và thứ hai. Để tìm đáp án thứ hai, trừ góc tham chiếu khỏi để tìm đáp án trong góc phần tư thứ hai.
Bước 4.2.5
Rút gọn .
Nhấp để xem thêm các bước...
Bước 4.2.5.1
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 4.2.5.2
Kết hợp các phân số.
Nhấp để xem thêm các bước...
Bước 4.2.5.2.1
Kết hợp .
Bước 4.2.5.2.2
Kết hợp các tử số trên mẫu số chung.
Bước 4.2.5.3
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 4.2.5.3.1
Di chuyển sang phía bên trái của .
Bước 4.2.5.3.2
Trừ khỏi .
Bước 4.2.6
Tìm chu kỳ của .
Nhấp để xem thêm các bước...
Bước 4.2.6.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 4.2.6.2
Thay thế với trong công thức cho chu kỳ.
Bước 4.2.6.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa .
Bước 4.2.6.4
Chia cho .
Bước 4.2.7
Chu kỳ của hàm nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên
, cho mọi số nguyên
, cho mọi số nguyên
Bước 5
Đáp án cuối cùng là tất cả các giá trị làm cho đúng.
, cho mọi số nguyên
Bước 6
Hợp nhất các câu trả lời.
, cho mọi số nguyên