Lượng giác Ví dụ

Giải để tìm x ở dạng Độ 2sin(x)tan(x)+tan(x)=0
Bước 1
Rút gọn vế trái của phương trình.
Nhấp để xem thêm các bước...
Bước 1.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 1.1.1
Viết lại theo sin và cosin.
Bước 1.1.2
Nhân .
Nhấp để xem thêm các bước...
Bước 1.1.2.1
Kết hợp .
Bước 1.1.2.2
Kết hợp .
Bước 1.1.2.3
Nâng lên lũy thừa .
Bước 1.1.2.4
Nâng lên lũy thừa .
Bước 1.1.2.5
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 1.1.2.6
Cộng .
Bước 1.1.3
Viết lại theo sin và cosin.
Bước 1.2
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 1.2.1
Đưa ra ngoài .
Bước 1.2.2
Tách các phân số.
Bước 1.2.3
Quy đổi từ sang .
Bước 1.2.4
Chia cho .
Bước 1.2.5
Quy đổi từ sang .
Bước 2
Đưa ra ngoài .
Nhấp để xem thêm các bước...
Bước 2.1
Đưa ra ngoài .
Bước 2.2
Nâng lên lũy thừa .
Bước 2.3
Đưa ra ngoài .
Bước 2.4
Đưa ra ngoài .
Bước 3
Nếu bất kỳ thừa số riêng lẻ nào ở vế trái của phương trình bằng , toàn bộ biểu thức sẽ bằng .
Bước 4
Đặt bằng và giải tìm .
Nhấp để xem thêm các bước...
Bước 4.1
Đặt bằng với .
Bước 4.2
Giải để tìm .
Nhấp để xem thêm các bước...
Bước 4.2.1
Lấy nghịch đảo tang của cả hai vế của phương trình để trích xuất từ trong hàm tang.
Bước 4.2.2
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 4.2.2.1
Giá trị chính xác của .
Bước 4.2.3
Hàm tang dương ở góc phần tư thứ nhất và thứ ba. Để tìm đáp án thứ hai, hãy trừ góc tham chiếu khỏi để tìm đáp án trong góc phần tư thứ tư.
Bước 4.2.4
Cộng .
Bước 4.2.5
Tìm chu kỳ của .
Nhấp để xem thêm các bước...
Bước 4.2.5.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 4.2.5.2
Thay thế với trong công thức cho chu kỳ.
Bước 4.2.5.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa .
Bước 4.2.5.4
Chia cho .
Bước 4.2.6
Chu kỳ của hàm nên các giá trị sẽ lặp lại sau mỗi độ theo cả hai hướng.
, cho mọi số nguyên
, cho mọi số nguyên
, cho mọi số nguyên
Bước 5
Đặt bằng và giải tìm .
Nhấp để xem thêm các bước...
Bước 5.1
Đặt bằng với .
Bước 5.2
Giải để tìm .
Nhấp để xem thêm các bước...
Bước 5.2.1
Trừ khỏi cả hai vế của phương trình.
Bước 5.2.2
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 5.2.2.1
Chia mỗi số hạng trong cho .
Bước 5.2.2.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 5.2.2.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 5.2.2.2.1.1
Triệt tiêu thừa số chung.
Bước 5.2.2.2.1.2
Chia cho .
Bước 5.2.2.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 5.2.2.3.1
Di chuyển dấu trừ ra phía trước của phân số.
Bước 5.2.3
Lấy nghịch đảo sin của cả hai vế của phương trình để trích xuất từ trong hàm sin.
Bước 5.2.4
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 5.2.4.1
Giá trị chính xác của .
Bước 5.2.5
Hàm sin âm trong góc phần tư thứ ba và thứ tư. Để tìm đáp án thứ hai, hãy trừ đáp án khỏi , để tìm góc tham chiếu. Tiếp theo, cộng góc tham chiếu này vào để tìm đáp án trong góc phần tư thứ ba.
Bước 5.2.6
Rút gọn biểu thức để tìm đáp án thứ hai.
Nhấp để xem thêm các bước...
Bước 5.2.6.1
Trừ khỏi .
Bước 5.2.6.2
Góc tìm được dương, nhỏ hơn , và có chung cạnh cuối với .
Bước 5.2.7
Tìm chu kỳ của .
Nhấp để xem thêm các bước...
Bước 5.2.7.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 5.2.7.2
Thay thế với trong công thức cho chu kỳ.
Bước 5.2.7.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa .
Bước 5.2.7.4
Chia cho .
Bước 5.2.8
Cộng vào mọi góc âm để có được các góc dương.
Nhấp để xem thêm các bước...
Bước 5.2.8.1
Cộng vào để tìm góc dương.
Bước 5.2.8.2
Trừ khỏi .
Bước 5.2.8.3
Liệt kê các góc mới.
Bước 5.2.9
Chu kỳ của hàm nên các giá trị sẽ lặp lại sau mỗi độ theo cả hai hướng.
, cho mọi số nguyên
, cho mọi số nguyên
, cho mọi số nguyên
Bước 6
Đáp án cuối cùng là tất cả các giá trị làm cho đúng.
, cho mọi số nguyên
Bước 7
Hợp nhất để .
, cho mọi số nguyên