Lượng giác Ví dụ

Giải để tìm θ ở dạng Độ 4csc(theta)+6=-2
Bước 1
Di chuyển tất cả các số hạng không chứa sang vế phải của phương trình.
Nhấp để xem thêm các bước...
Bước 1.1
Trừ khỏi cả hai vế của phương trình.
Bước 1.2
Trừ khỏi .
Bước 2
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 2.1
Chia mỗi số hạng trong cho .
Bước 2.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 2.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 2.2.1.1
Triệt tiêu thừa số chung.
Bước 2.2.1.2
Chia cho .
Bước 2.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 2.3.1
Chia cho .
Bước 3
Lấy cosecant nghịch đảo của cả hai vế của phương trình để trích xuất từ bên trong cosecant.
Bước 4
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 4.1
Giá trị chính xác của .
Bước 5
Hàm cosecant âm trong góc phần tư thứ ba và thứ tư. Để tìm đáp án thứ hai, hãy trừ đáp án khỏi , để tìm góc quy chiếu. Tiếp theo, cộng góc quy chiếu này vào để tìm đáp án trong góc phần tư thứ ba.
Bước 6
Rút gọn biểu thức để tìm đáp án thứ hai.
Nhấp để xem thêm các bước...
Bước 6.1
Trừ khỏi .
Bước 6.2
Góc tìm được dương, nhỏ hơn , và có chung cạnh cuối với .
Bước 7
Tìm chu kỳ của .
Nhấp để xem thêm các bước...
Bước 7.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 7.2
Thay thế với trong công thức cho chu kỳ.
Bước 7.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa .
Bước 7.4
Chia cho .
Bước 8
Cộng vào mọi góc âm để có được các góc dương.
Nhấp để xem thêm các bước...
Bước 8.1
Cộng vào để tìm góc dương.
Bước 8.2
Trừ khỏi .
Bước 8.3
Liệt kê các góc mới.
Bước 9
Chu kỳ của hàm nên các giá trị sẽ lặp lại sau mỗi độ theo cả hai hướng.
, cho mọi số nguyên