Lượng giác Ví dụ

Giải để tìm θ ở dạng Radian sec(theta)=2/( căn bậc hai của 3)
Bước 1
Rút gọn .
Nhấp để xem thêm các bước...
Bước 1.1
Nhân với .
Bước 1.2
Kết hợp và rút gọn mẫu số.
Nhấp để xem thêm các bước...
Bước 1.2.1
Nhân với .
Bước 1.2.2
Nâng lên lũy thừa .
Bước 1.2.3
Nâng lên lũy thừa .
Bước 1.2.4
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 1.2.5
Cộng .
Bước 1.2.6
Viết lại ở dạng .
Nhấp để xem thêm các bước...
Bước 1.2.6.1
Sử dụng để viết lại ở dạng .
Bước 1.2.6.2
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 1.2.6.3
Kết hợp .
Bước 1.2.6.4
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 1.2.6.4.1
Triệt tiêu thừa số chung.
Bước 1.2.6.4.2
Viết lại biểu thức.
Bước 1.2.6.5
Tính số mũ.
Bước 2
Lấy secant nghịch đảo của cả hai vế của phương trình để trích xuất từ bên trong secant.
Bước 3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 3.1
Giá trị chính xác của .
Bước 4
Hàm secant dương trong góc phần tư thứ nhất và thứ tư. Để tìm đáp án thứ hai, trừ góc tham chiếu từ để tìm đáp án trong góc phần tư thứ tư.
Bước 5
Rút gọn .
Nhấp để xem thêm các bước...
Bước 5.1
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 5.2
Kết hợp các phân số.
Nhấp để xem thêm các bước...
Bước 5.2.1
Kết hợp .
Bước 5.2.2
Kết hợp các tử số trên mẫu số chung.
Bước 5.3
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 5.3.1
Nhân với .
Bước 5.3.2
Trừ khỏi .
Bước 6
Tìm chu kỳ của .
Nhấp để xem thêm các bước...
Bước 6.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 6.2
Thay thế với trong công thức cho chu kỳ.
Bước 6.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa .
Bước 6.4
Chia cho .
Bước 7
Chu kỳ của hàm nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên