Lượng giác Ví dụ

Giải để tìm θ ở dạng Độ cos(theta/2)=-( căn bậc hai của 2)/2
Bước 1
Lấy cosin nghịch đảo của cả hai vế của phương trình để trích xuất từ trong cosin.
Bước 2
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 2.1
Giá trị chính xác của .
Bước 3
Nhân cả hai vế của phương trình với .
Bước 4
Rút gọn cả hai vế của phương trình.
Nhấp để xem thêm các bước...
Bước 4.1
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 4.1.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 4.1.1.1
Triệt tiêu thừa số chung.
Bước 4.1.1.2
Viết lại biểu thức.
Bước 4.2
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 4.2.1
Nhân với .
Bước 5
Hàm cosin âm trong góc phần tư thứ hai và thứ ba. Để tìm đáp án thứ hai, hãy trừ góc tham chiếu từ để tìm đáp án trong góc phần tư thứ ba.
Bước 6
Giải tìm .
Nhấp để xem thêm các bước...
Bước 6.1
Nhân cả hai vế của phương trình với .
Bước 6.2
Rút gọn cả hai vế của phương trình.
Nhấp để xem thêm các bước...
Bước 6.2.1
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 6.2.1.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 6.2.1.1.1
Triệt tiêu thừa số chung.
Bước 6.2.1.1.2
Viết lại biểu thức.
Bước 6.2.2
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 6.2.2.1
Rút gọn .
Nhấp để xem thêm các bước...
Bước 6.2.2.1.1
Trừ khỏi .
Bước 6.2.2.1.2
Nhân với .
Bước 7
Tìm chu kỳ của .
Nhấp để xem thêm các bước...
Bước 7.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 7.2
Thay thế với trong công thức cho chu kỳ.
Bước 7.3
xấp xỉ , là một số dương, nên ta loại bỏ dấu giá trị tuyệt đối
Bước 7.4
Nhân tử số với nghịch đảo của mẫu số.
Bước 7.5
Nhân với .
Bước 8
Chu kỳ của hàm nên các giá trị sẽ lặp lại sau mỗi độ theo cả hai hướng.
, cho mọi số nguyên