Giải tích sơ cấp Ví dụ

Tìm Tung Độ Gốc và Hoành Độ Gốc y = square root of x+25
Bước 1
Tìm các hoành độ gốc.
Nhấp để xem thêm các bước...
Bước 1.1
Để tìm (các) hoành độ gốc, thay vào cho và giải tìm .
Bước 1.2
Giải phương trình.
Nhấp để xem thêm các bước...
Bước 1.2.1
Viết lại phương trình ở dạng .
Bước 1.2.2
Để loại bỏ dấu căn ở vế trái của phương trình, ta bình phương cả hai vế của phương trình.
Bước 1.2.3
Rút gọn mỗi vế của phương trình.
Nhấp để xem thêm các bước...
Bước 1.2.3.1
Sử dụng để viết lại ở dạng .
Bước 1.2.3.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 1.2.3.2.1
Rút gọn .
Nhấp để xem thêm các bước...
Bước 1.2.3.2.1.1
Nhân các số mũ trong .
Nhấp để xem thêm các bước...
Bước 1.2.3.2.1.1.1
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 1.2.3.2.1.1.2
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 1.2.3.2.1.1.2.1
Triệt tiêu thừa số chung.
Bước 1.2.3.2.1.1.2.2
Viết lại biểu thức.
Bước 1.2.3.2.1.2
Rút gọn.
Bước 1.2.3.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 1.2.3.3.1
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 1.2.4
Trừ khỏi cả hai vế của phương trình.
Bước 1.3
(các) hoành độ gốc ở dạng điểm.
(các) hoành độ gốc:
(các) hoành độ gốc:
Bước 2
Tìm các tung độ gốc.
Nhấp để xem thêm các bước...
Bước 2.1
Để tìm (các) tung độ gốc, thay vào cho và giải tìm .
Bước 2.2
Rút gọn .
Nhấp để xem thêm các bước...
Bước 2.2.1
Cộng .
Bước 2.2.2
Viết lại ở dạng .
Bước 2.2.3
Đưa các số hạng dưới dấu căn ra ngoài, giả sử đó là các số thực dương.
Bước 2.3
(các) tung độ gốc ở dạng điểm.
(các) tung độ gốc:
(các) tung độ gốc:
Bước 3
Liệt kê các phần giao.
(các) hoành độ gốc:
(các) tung độ gốc:
Bước 4