Nhập bài toán...
Giải tích sơ cấp Ví dụ
Bước 1
Bước 1.1
Áp dụng quy tắc tích số cho .
Bước 1.2
Một mũ bất kỳ số nào là một.
Bước 1.3
Nâng lên lũy thừa .
Bước 2
Bước 2.1
Trừ khỏi cả hai vế của phương trình.
Bước 2.2
Viết ở dạng một phân số với một mẫu số chung.
Bước 2.3
Kết hợp các tử số trên mẫu số chung.
Bước 2.4
Trừ khỏi .
Bước 3
Lấy căn đã chỉ định của cả hai vế của phương trình để loại bỏ số mũ ở vế trái.
Bước 4
Bước 4.1
Viết lại ở dạng .
Bước 4.2
Rút gọn tử số.
Bước 4.2.1
Viết lại ở dạng .
Bước 4.2.1.1
Đưa ra ngoài .
Bước 4.2.1.2
Viết lại ở dạng .
Bước 4.2.2
Đưa các số hạng dưới căn thức ra ngoài.
Bước 4.3
Rút gọn mẫu số.
Bước 4.3.1
Viết lại ở dạng .
Bước 4.3.2
Đưa các số hạng dưới dấu căn ra ngoài, giả sử đó là các số thực dương.
Bước 5
Bước 5.1
Đầu tiên, sử dụng giá trị dương của để tìm đáp án đầu tiên.
Bước 5.2
Tiếp theo, sử dụng giá trị âm của để tìm đáp án thứ hai.
Bước 5.3
Đáp án hoàn chỉnh là kết quả của cả hai phần dương và âm của đáp án.
Bước 6
Lập từng đáp án để giải tìm .
Bước 7
Bước 7.1
Lấy cosin nghịch đảo của cả hai vế của phương trình để trích xuất từ trong cosin.
Bước 7.2
Rút gọn vế phải.
Bước 7.2.1
Tính .
Bước 7.3
Hàm cosin dương ở góc phần tư thứ nhất và thứ tư. Để tìm đáp án thứ hai, hãy trừ góc tham chiếu khỏi để tìm đáp án trong góc phần tư thứ tư.
Bước 7.4
Giải tìm .
Bước 7.4.1
Loại bỏ các dấu ngoặc đơn.
Bước 7.4.2
Rút gọn .
Bước 7.4.2.1
Nhân với .
Bước 7.4.2.2
Trừ khỏi .
Bước 7.5
Tìm chu kỳ của .
Bước 7.5.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 7.5.2
Thay thế với trong công thức cho chu kỳ.
Bước 7.5.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa và là .
Bước 7.5.4
Chia cho .
Bước 7.6
Chu kỳ của hàm là nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên
, cho mọi số nguyên
Bước 8
Bước 8.1
Lấy cosin nghịch đảo của cả hai vế của phương trình để trích xuất từ trong cosin.
Bước 8.2
Rút gọn vế phải.
Bước 8.2.1
Tính .
Bước 8.3
Hàm cosin âm trong góc phần tư thứ hai và thứ ba. Để tìm đáp án thứ hai, hãy trừ góc tham chiếu từ để tìm đáp án trong góc phần tư thứ ba.
Bước 8.4
Giải tìm .
Bước 8.4.1
Loại bỏ các dấu ngoặc đơn.
Bước 8.4.2
Rút gọn .
Bước 8.4.2.1
Nhân với .
Bước 8.4.2.2
Trừ khỏi .
Bước 8.5
Tìm chu kỳ của .
Bước 8.5.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 8.5.2
Thay thế với trong công thức cho chu kỳ.
Bước 8.5.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa và là .
Bước 8.5.4
Chia cho .
Bước 8.6
Chu kỳ của hàm là nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên
, cho mọi số nguyên
Bước 9
Liệt kê tất cả các đáp án.
, cho mọi số nguyên
Bước 10
Bước 10.1
Hợp nhất và để .
, cho mọi số nguyên
Bước 10.2
Hợp nhất và để .
, cho mọi số nguyên
, cho mọi số nguyên