Giải tích sơ cấp Ví dụ

Tìm Các Đường Tiệm Cận (2x)/(x^2+4)
Bước 1
Tìm nơi biểu thức không xác định.
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Bước 2
Các tiệm cận đứng xảy ra tại các khu vực của điểm gián đoạn vô cùng.
Không có các tiệm cận đứng
Bước 3
Xét hàm số hữu tỉ trong đó là bậc của tử số và là bậc của mẫu số.
1. Nếu , thì trục x, , là tiệm cận ngang.
2. Nếu , thì tiệm cận ngang là đường .
3. Nếu , thì không có tiệm cận ngang (có một tiệm cận xiên).
Bước 4
Tìm .
Bước 5
, trục x, , là tiệm cận ngang.
Bước 6
Không có tiệm cận xiên vì bậc của tử số nhỏ hơn hoặc bằng bậc của mẫu số.
Không có các tiệm cận xiên
Bước 7
Đây là tập hợp của tất cả các tiệm cận.
Không có các tiệm cận đứng
Các tiệm cận ngang:
Không có các tiệm cận xiên
Bước 8