Nhập bài toán...
Giải tích sơ cấp Ví dụ
Bước 1
Tìm nơi biểu thức không xác định.
Bước 2
Các tiệm cận đứng xảy ra tại các khu vực của điểm gián đoạn vô cùng.
Không có các tiệm cận đứng
Bước 3
Xét hàm số hữu tỉ trong đó là bậc của tử số và là bậc của mẫu số.
1. Nếu , thì trục x, , là tiệm cận ngang.
2. Nếu , thì tiệm cận ngang là đường .
3. Nếu , thì không có tiệm cận ngang (có một tiệm cận xiên).
Bước 4
Tìm và .
Bước 5
Vì , nên không có tiệm cận ngang.
Không có các tiệm cận ngang
Bước 6
Bước 6.1
Rút gọn biểu thức.
Bước 6.1.1
Phân tích thành thừa số bằng quy tắc số chính phương.
Bước 6.1.1.1
Viết lại ở dạng .
Bước 6.1.1.2
Kiểm tra xem số hạng ở giữa có gấp đôi tích của các số trước khi được bình phương ở số hạng thứ nhất và số hạng thứ ba không.
Bước 6.1.1.3
Viết lại đa thức này.
Bước 6.1.1.4
Phân tích thành thừa số bằng quy tắc tam thức chính phương , trong đó và .
Bước 6.1.2
Triệt tiêu thừa số chung của và .
Bước 6.1.2.1
Đưa ra ngoài .
Bước 6.1.2.2
Triệt tiêu các thừa số chung.
Bước 6.1.2.2.1
Nhân với .
Bước 6.1.2.2.2
Triệt tiêu thừa số chung.
Bước 6.1.2.2.3
Viết lại biểu thức.
Bước 6.1.2.2.4
Chia cho .
Bước 6.2
Tiệm cận xiên là phần đa thức của kết quả của phép chia số lớn.
Bước 7
Đây là tập hợp của tất cả các tiệm cận.
Không có các tiệm cận đứng
Không có các tiệm cận ngang
Các tiệm cận xiên:
Bước 8