Nhập bài toán...
Giải tích sơ cấp Ví dụ
Bước 1
Đối với bất kỳ , các tiệm cận đứng xảy ra tại , trong đó là một số nguyên. Sử dụng chu kì cơ bản cho , , để tìm các tiệm cận đứng cho . Đặt phần bên trong của hàm cosecant, , cho bằng để nơi tiệm cận đứng xảy ra cho .
Bước 2
Bước 2.1
Cộng cho cả hai vế của phương trình.
Bước 2.2
Chia mỗi số hạng trong cho và rút gọn.
Bước 2.2.1
Chia mỗi số hạng trong cho .
Bước 2.2.2
Rút gọn vế trái.
Bước 2.2.2.1
Triệt tiêu thừa số chung .
Bước 2.2.2.1.1
Triệt tiêu thừa số chung.
Bước 2.2.2.1.2
Chia cho .
Bước 3
Đặt phần bên trong hàm cosecant bằng .
Bước 4
Bước 4.1
Di chuyển tất cả các số hạng không chứa sang vế phải của phương trình.
Bước 4.1.1
Cộng cho cả hai vế của phương trình.
Bước 4.1.2
Cộng và .
Bước 4.2
Chia mỗi số hạng trong cho và rút gọn.
Bước 4.2.1
Chia mỗi số hạng trong cho .
Bước 4.2.2
Rút gọn vế trái.
Bước 4.2.2.1
Triệt tiêu thừa số chung .
Bước 4.2.2.1.1
Triệt tiêu thừa số chung.
Bước 4.2.2.1.2
Chia cho .
Bước 5
Chu kỳ cơ bản cho sẽ xảy ra tại , nơi và là các tiệm cận đứng.
Bước 6
Bước 6.1
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa và là .
Bước 6.2
Triệt tiêu thừa số chung .
Bước 6.2.1
Triệt tiêu thừa số chung.
Bước 6.2.2
Chia cho .
Bước 7
Các tiệm cận đứng cho xảy ra tại , và mỗi , trong đó là một số nguyên. Đây là nửa chu kỳ.
Bước 8
Cosecant chỉ có các tiệm cận đứng.
Không có các tiệm cận ngang
Không có các tiệm cận xiên
Các tiệm cận đứng: nơi là một số nguyên
Bước 9