Giải tích sơ cấp Ví dụ

Phân Tích Nhân Tử x^2(x-2)(x+2)+3x+6
Bước 1
Áp dụng thuộc tính phân phối.
Bước 2
Nhân với bằng cách cộng các số mũ.
Nhấp để xem thêm các bước...
Bước 2.1
Nhân với .
Nhấp để xem thêm các bước...
Bước 2.1.1
Nâng lên lũy thừa .
Bước 2.1.2
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 2.2
Cộng .
Bước 3
Di chuyển sang phía bên trái của .
Bước 4
Khai triển bằng cách sử dụng Phương pháp FOIL.
Nhấp để xem thêm các bước...
Bước 4.1
Áp dụng thuộc tính phân phối.
Bước 4.2
Áp dụng thuộc tính phân phối.
Bước 4.3
Áp dụng thuộc tính phân phối.
Bước 5
Rút gọn và kết hợp các số hạng đồng dạng.
Nhấp để xem thêm các bước...
Bước 5.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 5.1.1
Nhân với bằng cách cộng các số mũ.
Nhấp để xem thêm các bước...
Bước 5.1.1.1
Nhân với .
Nhấp để xem thêm các bước...
Bước 5.1.1.1.1
Nâng lên lũy thừa .
Bước 5.1.1.1.2
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 5.1.1.2
Cộng .
Bước 5.1.2
Di chuyển sang phía bên trái của .
Bước 5.1.3
Nhân với bằng cách cộng các số mũ.
Nhấp để xem thêm các bước...
Bước 5.1.3.1
Di chuyển .
Bước 5.1.3.2
Nhân với .
Nhấp để xem thêm các bước...
Bước 5.1.3.2.1
Nâng lên lũy thừa .
Bước 5.1.3.2.2
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 5.1.3.3
Cộng .
Bước 5.1.4
Nhân với .
Bước 5.2
Trừ khỏi .
Bước 5.3
Cộng .
Bước 6
Viết lại ở dạng đã được phân tích thành thừa số.
Nhấp để xem thêm các bước...
Bước 6.1
Đưa ra ngoài .
Nhấp để xem thêm các bước...
Bước 6.1.1
Đưa ra ngoài .
Bước 6.1.2
Đưa ra ngoài .
Bước 6.1.3
Đưa ra ngoài .
Bước 6.2
Viết lại ở dạng .
Bước 6.3
Phân tích thành thừa số.
Nhấp để xem thêm các bước...
Bước 6.3.1
Vì cả hai số hạng đều là số chính phương, nên ta phân tích thành thừa số bằng công thức hiệu của hai bình phương, trong đó .
Bước 6.3.2
Loại bỏ các dấu ngoặc đơn không cần thiết.
Bước 6.4
Đưa ra ngoài .
Nhấp để xem thêm các bước...
Bước 6.4.1
Đưa ra ngoài .
Bước 6.4.2
Đưa ra ngoài .
Bước 6.4.3
Đưa ra ngoài .
Bước 6.5
Đưa ra ngoài .
Nhấp để xem thêm các bước...
Bước 6.5.1
Đưa ra ngoài .
Bước 6.5.2
Đưa ra ngoài .
Bước 6.5.3
Đưa ra ngoài .
Bước 6.6
Áp dụng thuộc tính phân phối.
Bước 6.7
Nhân với bằng cách cộng các số mũ.
Nhấp để xem thêm các bước...
Bước 6.7.1
Nhân với .
Nhấp để xem thêm các bước...
Bước 6.7.1.1
Nâng lên lũy thừa .
Bước 6.7.1.2
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 6.7.2
Cộng .
Bước 6.8
Di chuyển sang phía bên trái của .
Bước 6.9
Phân tích thành thừa số.
Nhấp để xem thêm các bước...
Bước 6.9.1
Phân tích thành thừa số bằng phương pháp kiểm tra nghiệm hữu tỉ.
Nhấp để xem thêm các bước...
Bước 6.9.1.1
Nếu một hàm đa thức có các hệ số là số nguyên, thì mọi điểm zero hữu tỉ sẽ có dạng trong đó là một thừa số của hằng số và là một thừa số của hệ số cao nhất.
Bước 6.9.1.2
Tìm tất cả các tổ hợp của . Đây là những nghiệm có thể có của các hàm số đa thức.
Bước 6.9.1.3
Thay và rút gọn biểu thức. Trong trường hợp này, biểu thức bằng vì vậy là một nghiệm của đa thức.
Nhấp để xem thêm các bước...
Bước 6.9.1.3.1
Thay vào đa thức.
Bước 6.9.1.3.2
Nâng lên lũy thừa .
Bước 6.9.1.3.3
Nâng lên lũy thừa .
Bước 6.9.1.3.4
Nhân với .
Bước 6.9.1.3.5
Trừ khỏi .
Bước 6.9.1.3.6
Cộng .
Bước 6.9.1.4
là một nghiệm đã biết, chia đa thức cho để tìm thương đa thức. Đa thức này sau đó có thể được sử dụng để tìm các nghiệm còn lại.
Bước 6.9.1.5
Chia cho .
Nhấp để xem thêm các bước...
Bước 6.9.1.5.1
Lập các đa thức được chia. Nếu không có đủ số hạng cho mọi số mũ, hãy chèn một số hạng có giá trị .
+-++
Bước 6.9.1.5.2
Chia số hạng bậc cao nhất trong biểu thức bị chia cho số hạng bậc cao nhất trong biểu thức chia .
+-++
Bước 6.9.1.5.3
Nhân số hạng thương số mới với số chia.
+-++
++
Bước 6.9.1.5.4
Biểu thức cần được trừ khỏi số bị chia, vì vậy hãy đổi tất cả các dấu trong
+-++
--
Bước 6.9.1.5.5
Sau khi đổi các dấu, cộng số bị chia cuối cùng của đa thức từ phép nhân để tìm số bị chia mới.
+-++
--
-
Bước 6.9.1.5.6
Đưa các số hạng tiếp theo từ biểu thức bị chia ban đầu xuống dưới biểu thức bị chia hiện tại.
+-++
--
-+
Bước 6.9.1.5.7
Chia số hạng bậc cao nhất trong biểu thức bị chia cho số hạng bậc cao nhất trong biểu thức chia .
-
+-++
--
-+
Bước 6.9.1.5.8
Nhân số hạng thương số mới với số chia.
-
+-++
--
-+
--
Bước 6.9.1.5.9
Biểu thức cần được trừ khỏi số bị chia, vì vậy hãy đổi tất cả các dấu trong
-
+-++
--
-+
++
Bước 6.9.1.5.10
Sau khi đổi các dấu, cộng số bị chia cuối cùng của đa thức từ phép nhân để tìm số bị chia mới.
-
+-++
--
-+
++
+
Bước 6.9.1.5.11
Đưa các số hạng tiếp theo từ biểu thức bị chia ban đầu xuống dưới biểu thức bị chia hiện tại.
-
+-++
--
-+
++
++
Bước 6.9.1.5.12
Chia số hạng bậc cao nhất trong biểu thức bị chia cho số hạng bậc cao nhất trong biểu thức chia .
-+
+-++
--
-+
++
++
Bước 6.9.1.5.13
Nhân số hạng thương số mới với số chia.
-+
+-++
--
-+
++
++
++
Bước 6.9.1.5.14
Biểu thức cần được trừ khỏi số bị chia, vì vậy hãy đổi tất cả các dấu trong
-+
+-++
--
-+
++
++
--
Bước 6.9.1.5.15
Sau khi đổi các dấu, cộng số bị chia cuối cùng của đa thức từ phép nhân để tìm số bị chia mới.
-+
+-++
--
-+
++
++
--
Bước 6.9.1.5.16
Vì số dư là , nên câu trả lời cuối cùng là thương.
Bước 6.9.1.6
Viết ở dạng một tập hợp các thừa số.
Bước 6.9.2
Loại bỏ các dấu ngoặc đơn không cần thiết.