Giải tích sơ cấp Ví dụ

Tìm Tung Độ Gốc và Hoành Độ Gốc 4x^2+9y^2-18y-27=0
Bước 1
Tìm các hoành độ gốc.
Nhấp để xem thêm các bước...
Bước 1.1
Để tìm (các) hoành độ gốc, thay vào cho và giải tìm .
Bước 1.2
Giải phương trình.
Nhấp để xem thêm các bước...
Bước 1.2.1
Rút gọn .
Nhấp để xem thêm các bước...
Bước 1.2.1.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 1.2.1.1.1
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 1.2.1.1.2
Nhân với .
Bước 1.2.1.1.3
Nhân với .
Bước 1.2.1.2
Kết hợp các số hạng đối nhau trong .
Nhấp để xem thêm các bước...
Bước 1.2.1.2.1
Cộng .
Bước 1.2.1.2.2
Cộng .
Bước 1.2.2
Cộng cho cả hai vế của phương trình.
Bước 1.2.3
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 1.2.3.1
Chia mỗi số hạng trong cho .
Bước 1.2.3.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 1.2.3.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 1.2.3.2.1.1
Triệt tiêu thừa số chung.
Bước 1.2.3.2.1.2
Chia cho .
Bước 1.2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Bước 1.2.5
Rút gọn .
Nhấp để xem thêm các bước...
Bước 1.2.5.1
Viết lại ở dạng .
Bước 1.2.5.2
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 1.2.5.2.1
Viết lại ở dạng .
Nhấp để xem thêm các bước...
Bước 1.2.5.2.1.1
Đưa ra ngoài .
Bước 1.2.5.2.1.2
Viết lại ở dạng .
Bước 1.2.5.2.2
Đưa các số hạng dưới căn thức ra ngoài.
Bước 1.2.5.3
Rút gọn mẫu số.
Nhấp để xem thêm các bước...
Bước 1.2.5.3.1
Viết lại ở dạng .
Bước 1.2.5.3.2
Đưa các số hạng dưới dấu căn ra ngoài, giả sử đó là các số thực dương.
Bước 1.2.6
Đáp án hoàn chỉnh là kết quả của cả hai phần dương và âm của đáp án.
Nhấp để xem thêm các bước...
Bước 1.2.6.1
Đầu tiên, sử dụng giá trị dương của để tìm đáp án đầu tiên.
Bước 1.2.6.2
Tiếp theo, sử dụng giá trị âm của để tìm đáp án thứ hai.
Bước 1.2.6.3
Đáp án hoàn chỉnh là kết quả của cả hai phần dương và âm của đáp án.
Bước 1.3
(các) hoành độ gốc ở dạng điểm.
(các) hoành độ gốc:
(các) hoành độ gốc:
Bước 2
Tìm các tung độ gốc.
Nhấp để xem thêm các bước...
Bước 2.1
Để tìm (các) tung độ gốc, thay vào cho và giải tìm .
Bước 2.2
Giải phương trình.
Nhấp để xem thêm các bước...
Bước 2.2.1
Rút gọn .
Nhấp để xem thêm các bước...
Bước 2.2.1.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 2.2.1.1.1
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 2.2.1.1.2
Nhân với .
Bước 2.2.1.2
Cộng .
Bước 2.2.2
Phân tích vế trái của phương trình thành thừa số.
Nhấp để xem thêm các bước...
Bước 2.2.2.1
Đưa ra ngoài .
Nhấp để xem thêm các bước...
Bước 2.2.2.1.1
Đưa ra ngoài .
Bước 2.2.2.1.2
Đưa ra ngoài .
Bước 2.2.2.1.3
Đưa ra ngoài .
Bước 2.2.2.1.4
Đưa ra ngoài .
Bước 2.2.2.1.5
Đưa ra ngoài .
Bước 2.2.2.2
Phân tích thành thừa số.
Nhấp để xem thêm các bước...
Bước 2.2.2.2.1
Phân tích thành thừa số bằng phương pháp AC.
Nhấp để xem thêm các bước...
Bước 2.2.2.2.1.1
Xét dạng . Tìm một cặp số nguyên mà tích số của chúng là và tổng của chúng là . Trong trường hợp này, tích số của chúng là và tổng của chúng là .
Bước 2.2.2.2.1.2
Viết dạng đã được phân tích thành thừa số bằng các số nguyên này.
Bước 2.2.2.2.2
Loại bỏ các dấu ngoặc đơn không cần thiết.
Bước 2.2.3
Nếu bất kỳ thừa số riêng lẻ nào ở vế trái của phương trình bằng , toàn bộ biểu thức sẽ bằng .
Bước 2.2.4
Đặt bằng và giải tìm .
Nhấp để xem thêm các bước...
Bước 2.2.4.1
Đặt bằng với .
Bước 2.2.4.2
Cộng cho cả hai vế của phương trình.
Bước 2.2.5
Đặt bằng và giải tìm .
Nhấp để xem thêm các bước...
Bước 2.2.5.1
Đặt bằng với .
Bước 2.2.5.2
Trừ khỏi cả hai vế của phương trình.
Bước 2.2.6
Đáp án cuối cùng là tất cả các giá trị làm cho đúng.
Bước 2.3
(các) tung độ gốc ở dạng điểm.
(các) tung độ gốc:
(các) tung độ gốc:
Bước 3
Liệt kê các phần giao.
(các) hoành độ gốc:
(các) tung độ gốc:
Bước 4