Giải tích sơ cấp Ví dụ

Tìm Các Nghiệm/Các Điểm Zero Bằng Cách Sử Dụng Phương Pháp Khảo Nghiệm Hữu Tỷ x^3+14x^2+48x-7
Bước 1
Nếu một hàm đa thức có các hệ số là số nguyên, thì mọi điểm zero hữu tỉ sẽ có dạng trong đó là một thừa số của hằng số và là một thừa số của hệ số cao nhất.
Bước 2
Tìm tất cả các tổ hợp của . Đây là những nghiệm có thể có của các hàm số đa thức.
Bước 3
Thay từng nghiệm có thể có vào đa thức để tìm các nghiệm thực. Rút gọn để kiểm tra xem giá trị có phải là , có nghĩa là nó là một nghiệm.
Bước 4
Rút gọn biểu thức. Trong trường hợp này, biểu thức bằng vì vậy là một căn của đa thức.
Nhấp để xem thêm các bước...
Bước 4.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 4.1.1
Nâng lên lũy thừa .
Bước 4.1.2
Nâng lên lũy thừa .
Bước 4.1.3
Nhân với .
Bước 4.1.4
Nhân với .
Bước 4.2
Rút gọn bằng cách cộng và trừ.
Nhấp để xem thêm các bước...
Bước 4.2.1
Cộng .
Bước 4.2.2
Trừ khỏi .
Bước 4.2.3
Trừ khỏi .
Bước 5
là một nghiệm đã biết, chia đa thức cho để tìm đa thức thương. Đa thức này sau đó có thể được sử dụng để tìm các nghiệm còn lại.
Bước 6
Tiếp theo, tìm các nghiệm của đa thức còn lại. Bậc của đa thức đã bị giảm xuống .
Nhấp để xem thêm các bước...
Bước 6.1
Đặt các số đại diện cho số chia và số bị chia vào cấu hình giống như một phép chia.
  
Bước 6.2
Số đầu tiên trong số bị chia được đặt vào vị trí đầu tiên của phần kết quả (bên dưới đường thẳng ngang).
  
Bước 6.3
Nhân số mới nhất trong kết quả với số chia và đặt kết quả của dưới số hạng tiếp theo trong số bị chia .
  
Bước 6.4
Cộng tích của phép nhân và số từ số bị chia sau đó đặt kết quả vào vị trí tiếp theo ở dòng kết quả.
  
Bước 6.5
Nhân số mới nhất trong kết quả với số chia và đặt kết quả của dưới số hạng tiếp theo trong số bị chia .
  
Bước 6.6
Cộng tích của phép nhân và số từ số bị chia sau đó đặt kết quả vào vị trí tiếp theo ở dòng kết quả.
  
Bước 6.7
Nhân số mới nhất trong kết quả với số chia và đặt kết quả của dưới số hạng tiếp theo trong số bị chia .
 
Bước 6.8
Cộng tích của phép nhân và số từ số bị chia sau đó đặt kết quả vào vị trí tiếp theo ở dòng kết quả.
 
Bước 6.9
Tất cả các số trừ số cuối cùng trở thành hệ số của đa thức thương. Giá trị cuối cùng trong dòng kết quả là số dư.
Bước 6.10
Rút gọn đa thức thương.
Bước 7
Giải phương trình để tìm các nghiệm còn lại.
Nhấp để xem thêm các bước...
Bước 7.1
Sử dụng công thức bậc hai để tìm các đáp án.
Bước 7.2
Thay các giá trị , , và vào công thức bậc hai và giải tìm .
Bước 7.3
Rút gọn.
Nhấp để xem thêm các bước...
Bước 7.3.1
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 7.3.1.1
Nâng lên lũy thừa .
Bước 7.3.1.2
Nhân .
Nhấp để xem thêm các bước...
Bước 7.3.1.2.1
Nhân với .
Bước 7.3.1.2.2
Nhân với .
Bước 7.3.1.3
Cộng .
Bước 7.3.2
Nhân với .
Bước 7.4
Rút gọn biểu thức để giải tìm phần của .
Nhấp để xem thêm các bước...
Bước 7.4.1
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 7.4.1.1
Nâng lên lũy thừa .
Bước 7.4.1.2
Nhân .
Nhấp để xem thêm các bước...
Bước 7.4.1.2.1
Nhân với .
Bước 7.4.1.2.2
Nhân với .
Bước 7.4.1.3
Cộng .
Bước 7.4.2
Nhân với .
Bước 7.4.3
Chuyển đổi thành .
Bước 7.4.4
Viết lại ở dạng .
Bước 7.4.5
Đưa ra ngoài .
Bước 7.4.6
Đưa ra ngoài .
Bước 7.4.7
Di chuyển dấu trừ ra phía trước của phân số.
Bước 7.5
Rút gọn biểu thức để giải tìm phần của .
Nhấp để xem thêm các bước...
Bước 7.5.1
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 7.5.1.1
Nâng lên lũy thừa .
Bước 7.5.1.2
Nhân .
Nhấp để xem thêm các bước...
Bước 7.5.1.2.1
Nhân với .
Bước 7.5.1.2.2
Nhân với .
Bước 7.5.1.3
Cộng .
Bước 7.5.2
Nhân với .
Bước 7.5.3
Chuyển đổi thành .
Bước 7.5.4
Viết lại ở dạng .
Bước 7.5.5
Đưa ra ngoài .
Bước 7.5.6
Đưa ra ngoài .
Bước 7.5.7
Di chuyển dấu trừ ra phía trước của phân số.
Bước 7.6
Câu trả lời cuối cùng là sự kết hợp của cả hai đáp án.
Bước 8
Đa thức có thể được viết dưới dạng một tập hợp các thừa số tuyến tính.
Bước 9
Đây là các nghiệm (các điểm zero) của đa thức .
Bước 10
Kết quả có thể được hiển thị ở nhiều dạng.
Dạng chính xác:
Dạng thập phân:
Bước 11