Nhập bài toán...
Giải tích sơ cấp Ví dụ
Bước 1
Đặt số trong dấu căn trong lớn hơn hoặc bằng để tìm nơi biểu thức xác định.
Bước 2
Bước 2.1
Quy đổi bất đẳng thức sang một phương trình.
Bước 2.2
Phân tích vế trái của phương trình thành thừa số.
Bước 2.2.1
Phân tích thành thừa số bằng phương pháp kiểm tra nghiệm hữu tỉ.
Bước 2.2.1.1
Nếu một hàm đa thức có các hệ số là số nguyên, thì mọi điểm zero hữu tỉ sẽ có dạng trong đó là một thừa số của hằng số và là một thừa số của hệ số cao nhất.
Bước 2.2.1.2
Tìm tất cả các tổ hợp của . Đây là những nghiệm có thể có của các hàm số đa thức.
Bước 2.2.1.3
Thay và rút gọn biểu thức. Trong trường hợp này, biểu thức bằng vì vậy là một nghiệm của đa thức.
Bước 2.2.1.3.1
Thay vào đa thức.
Bước 2.2.1.3.2
Nâng lên lũy thừa .
Bước 2.2.1.3.3
Nâng lên lũy thừa .
Bước 2.2.1.3.4
Nhân với .
Bước 2.2.1.3.5
Cộng và .
Bước 2.2.1.3.6
Nhân với .
Bước 2.2.1.3.7
Trừ khỏi .
Bước 2.2.1.3.8
Cộng và .
Bước 2.2.1.4
Vì là một nghiệm đã biết, chia đa thức cho để tìm thương đa thức. Đa thức này sau đó có thể được sử dụng để tìm các nghiệm còn lại.
Bước 2.2.1.5
Chia cho .
Bước 2.2.1.5.1
Lập các đa thức được chia. Nếu không có đủ số hạng cho mọi số mũ, hãy chèn một số hạng có giá trị .
+ | + | + | + |
Bước 2.2.1.5.2
Chia số hạng bậc cao nhất trong biểu thức bị chia cho số hạng bậc cao nhất trong biểu thức chia .
+ | + | + | + |
Bước 2.2.1.5.3
Nhân số hạng thương số mới với số chia.
+ | + | + | + | ||||||||
+ | + |
Bước 2.2.1.5.4
Biểu thức cần được trừ khỏi số bị chia, vì vậy hãy đổi tất cả các dấu trong
+ | + | + | + | ||||||||
- | - |
Bước 2.2.1.5.5
Sau khi đổi các dấu, cộng số bị chia cuối cùng của đa thức từ phép nhân để tìm số bị chia mới.
+ | + | + | + | ||||||||
- | - | ||||||||||
+ |
Bước 2.2.1.5.6
Đưa các số hạng tiếp theo từ biểu thức bị chia ban đầu xuống dưới biểu thức bị chia hiện tại.
+ | + | + | + | ||||||||
- | - | ||||||||||
+ | + |
Bước 2.2.1.5.7
Chia số hạng bậc cao nhất trong biểu thức bị chia cho số hạng bậc cao nhất trong biểu thức chia .
+ | |||||||||||
+ | + | + | + | ||||||||
- | - | ||||||||||
+ | + |
Bước 2.2.1.5.8
Nhân số hạng thương số mới với số chia.
+ | |||||||||||
+ | + | + | + | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
+ | + |
Bước 2.2.1.5.9
Biểu thức cần được trừ khỏi số bị chia, vì vậy hãy đổi tất cả các dấu trong
+ | |||||||||||
+ | + | + | + | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - |
Bước 2.2.1.5.10
Sau khi đổi các dấu, cộng số bị chia cuối cùng của đa thức từ phép nhân để tìm số bị chia mới.
+ | |||||||||||
+ | + | + | + | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
+ |
Bước 2.2.1.5.11
Đưa các số hạng tiếp theo từ biểu thức bị chia ban đầu xuống dưới biểu thức bị chia hiện tại.
+ | |||||||||||
+ | + | + | + | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
+ | + |
Bước 2.2.1.5.12
Chia số hạng bậc cao nhất trong biểu thức bị chia cho số hạng bậc cao nhất trong biểu thức chia .
+ | + | ||||||||||
+ | + | + | + | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
+ | + |
Bước 2.2.1.5.13
Nhân số hạng thương số mới với số chia.
+ | + | ||||||||||
+ | + | + | + | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
+ | + | ||||||||||
+ | + |
Bước 2.2.1.5.14
Biểu thức cần được trừ khỏi số bị chia, vì vậy hãy đổi tất cả các dấu trong
+ | + | ||||||||||
+ | + | + | + | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - |
Bước 2.2.1.5.15
Sau khi đổi các dấu, cộng số bị chia cuối cùng của đa thức từ phép nhân để tìm số bị chia mới.
+ | + | ||||||||||
+ | + | + | + | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
Bước 2.2.1.5.16
Vì số dư là , nên câu trả lời cuối cùng là thương.
Bước 2.2.1.6
Viết ở dạng một tập hợp các thừa số.
Bước 2.2.2
Phân tích thành thừa số bằng phương pháp AC.
Bước 2.2.2.1
Phân tích thành thừa số bằng phương pháp AC.
Bước 2.2.2.1.1
Xét dạng . Tìm một cặp số nguyên mà tích số của chúng là và tổng của chúng là . Trong trường hợp này, tích số của chúng là và tổng của chúng là .
Bước 2.2.2.1.2
Viết dạng đã được phân tích thành thừa số bằng các số nguyên này.
Bước 2.2.2.2
Loại bỏ các dấu ngoặc đơn không cần thiết.
Bước 2.3
Nếu bất kỳ thừa số riêng lẻ nào ở vế trái của phương trình bằng , toàn bộ biểu thức sẽ bằng .
Bước 2.4
Đặt bằng và giải tìm .
Bước 2.4.1
Đặt bằng với .
Bước 2.4.2
Trừ khỏi cả hai vế của phương trình.
Bước 2.5
Đặt bằng và giải tìm .
Bước 2.5.1
Đặt bằng với .
Bước 2.5.2
Trừ khỏi cả hai vế của phương trình.
Bước 2.6
Đặt bằng và giải tìm .
Bước 2.6.1
Đặt bằng với .
Bước 2.6.2
Trừ khỏi cả hai vế của phương trình.
Bước 2.7
Đáp án cuối cùng là tất cả các giá trị làm cho đúng.
Bước 2.8
Sử dụng mỗi nghiệm để tạo các khoảng kiểm định.
Bước 2.9
Chọn một giá trị kiểm định từ mỗi khoảng và điền giá trị này vào bất đẳng thức ban đầu để xác định khoảng nào thỏa mãn bất đẳng thức.
Bước 2.9.1
Kiểm tra một giá trị trong khoảng để xem nó có làm cho bất đẳng thức đúng không.
Bước 2.9.1.1
Chọn một giá trị trên khoảng và quan sát nếu giá trị này làm cho bất đẳng thức ban đầu đúng.
Bước 2.9.1.2
Thay thế bằng trong bất đẳng thức ban đầu.
Bước 2.9.1.3
Vế trái nhỏ hơn vế phải , có nghĩa là câu đã cho sai.
False
False
Bước 2.9.2
Kiểm tra một giá trị trong khoảng để xem nó có làm cho bất đẳng thức đúng không.
Bước 2.9.2.1
Chọn một giá trị trên khoảng và quan sát nếu giá trị này làm cho bất đẳng thức ban đầu đúng.
Bước 2.9.2.2
Thay thế bằng trong bất đẳng thức ban đầu.
Bước 2.9.2.3
Vế trái lớn hơn vế phải , có nghĩa là câu đã cho luôn đúng.
True
True
Bước 2.9.3
Kiểm tra một giá trị trong khoảng để xem nó có làm cho bất đẳng thức đúng không.
Bước 2.9.3.1
Chọn một giá trị trên khoảng và quan sát nếu giá trị này làm cho bất đẳng thức ban đầu đúng.
Bước 2.9.3.2
Thay thế bằng trong bất đẳng thức ban đầu.
Bước 2.9.3.3
Vế trái nhỏ hơn vế phải , có nghĩa là câu đã cho sai.
False
False
Bước 2.9.4
Kiểm tra một giá trị trong khoảng để xem nó có làm cho bất đẳng thức đúng không.
Bước 2.9.4.1
Chọn một giá trị trên khoảng và quan sát nếu giá trị này làm cho bất đẳng thức ban đầu đúng.
Bước 2.9.4.2
Thay thế bằng trong bất đẳng thức ban đầu.
Bước 2.9.4.3
Vế trái lớn hơn vế phải , có nghĩa là câu đã cho luôn đúng.
True
True
Bước 2.9.5
So sánh các khoảng để xác định khoảng nào thỏa mãn bất phương trình ban đầu.
Sai
Đúng
Sai
Đúng
Sai
Đúng
Sai
Đúng
Bước 2.10
Đáp án bao gồm tất cả các khoảng thực sự.
hoặc
hoặc
Bước 3
Tập xác định là tất cả các giá trị của và làm cho biểu thức xác định.
Ký hiệu khoảng:
Ký hiệu xây dựng tập hợp:
Bước 4