Giải tích sơ cấp Ví dụ

Giải bằng Phương Pháp Thay Thế y=3x-9 , y=x^2-7
,
Bước 1
Loại bỏ các vế bằng nhau của mỗi phương trình sau đó kết hợp.
Bước 2
Giải để tìm .
Nhấp để xem thêm các bước...
Bước 2.1
Trừ khỏi cả hai vế của phương trình.
Bước 2.2
Cộng cho cả hai vế của phương trình.
Bước 2.3
Cộng .
Bước 2.4
Phân tích vế trái của phương trình thành thừa số.
Nhấp để xem thêm các bước...
Bước 2.4.1
Đưa ra ngoài .
Nhấp để xem thêm các bước...
Bước 2.4.1.1
Sắp xếp lại .
Bước 2.4.1.2
Đưa ra ngoài .
Bước 2.4.1.3
Đưa ra ngoài .
Bước 2.4.1.4
Viết lại ở dạng .
Bước 2.4.1.5
Đưa ra ngoài .
Bước 2.4.1.6
Đưa ra ngoài .
Bước 2.4.2
Phân tích thành thừa số.
Nhấp để xem thêm các bước...
Bước 2.4.2.1
Phân tích thành thừa số bằng phương pháp AC.
Nhấp để xem thêm các bước...
Bước 2.4.2.1.1
Xét dạng . Tìm một cặp số nguyên mà tích số của chúng là và tổng của chúng là . Trong trường hợp này, tích số của chúng là và tổng của chúng là .
Bước 2.4.2.1.2
Viết dạng đã được phân tích thành thừa số bằng các số nguyên này.
Bước 2.4.2.2
Loại bỏ các dấu ngoặc đơn không cần thiết.
Bước 2.5
Nếu bất kỳ thừa số riêng lẻ nào ở vế trái của phương trình bằng , toàn bộ biểu thức sẽ bằng .
Bước 2.6
Đặt bằng và giải tìm .
Nhấp để xem thêm các bước...
Bước 2.6.1
Đặt bằng với .
Bước 2.6.2
Cộng cho cả hai vế của phương trình.
Bước 2.7
Đặt bằng và giải tìm .
Nhấp để xem thêm các bước...
Bước 2.7.1
Đặt bằng với .
Bước 2.7.2
Cộng cho cả hai vế của phương trình.
Bước 2.8
Đáp án cuối cùng là tất cả các giá trị làm cho đúng.
Bước 3
Tính khi .
Nhấp để xem thêm các bước...
Bước 3.1
Thay bằng .
Bước 3.2
Thế vào trong và giải tìm .
Nhấp để xem thêm các bước...
Bước 3.2.1
Loại bỏ các dấu ngoặc đơn.
Bước 3.2.2
Rút gọn .
Nhấp để xem thêm các bước...
Bước 3.2.2.1
Nâng lên lũy thừa .
Bước 3.2.2.2
Trừ khỏi .
Bước 4
Tính khi .
Nhấp để xem thêm các bước...
Bước 4.1
Thay bằng .
Bước 4.2
Thế vào trong và giải tìm .
Nhấp để xem thêm các bước...
Bước 4.2.1
Loại bỏ các dấu ngoặc đơn.
Bước 4.2.2
Rút gọn .
Nhấp để xem thêm các bước...
Bước 4.2.2.1
Một mũ bất kỳ số nào là một.
Bước 4.2.2.2
Trừ khỏi .
Bước 5
Đáp án cho hệ là tập hợp đầy đủ của các cặp có thứ tự cũng chính là các đáp án hợp lệ.
Bước 6
Kết quả có thể được hiển thị ở nhiều dạng.
Dạng điểm:
Dạng phương trình:
Bước 7