Nhập bài toán...
Giải tích sơ cấp Ví dụ
Bước 1
Nếu một hàm đa thức có các hệ số là số nguyên, thì mọi điểm zero hữu tỉ sẽ có dạng trong đó là một thừa số của hằng số và là một thừa số của hệ số cao nhất.
Bước 2
Tìm tất cả các tổ hợp của . Đây là những nghiệm có thể có của các hàm số đa thức.
Bước 3
Thay từng nghiệm có thể có vào đa thức để tìm các nghiệm thực. Rút gọn để kiểm tra xem giá trị có phải là , có nghĩa là nó là một nghiệm.
Bước 4
Bước 4.1
Rút gọn mỗi số hạng.
Bước 4.1.1
Một mũ bất kỳ số nào là một.
Bước 4.1.2
Nhân với .
Bước 4.1.3
Một mũ bất kỳ số nào là một.
Bước 4.1.4
Nhân với .
Bước 4.1.5
Một mũ bất kỳ số nào là một.
Bước 4.1.6
Nhân với .
Bước 4.1.7
Nhân với .
Bước 4.2
Rút gọn bằng cách cộng và trừ.
Bước 4.2.1
Trừ khỏi .
Bước 4.2.2
Cộng và .
Bước 4.2.3
Trừ khỏi .
Bước 4.2.4
Trừ khỏi .
Bước 5
Vì là một nghiệm đã biết, chia đa thức cho để tìm đa thức thương. Đa thức này sau đó có thể được sử dụng để tìm các nghiệm còn lại.
Bước 6
Bước 6.1
Đặt các số đại diện cho số chia và số bị chia vào cấu hình giống như một phép chia.
Bước 6.2
Số đầu tiên trong số bị chia được đặt vào vị trí đầu tiên của phần kết quả (bên dưới đường thẳng ngang).
Bước 6.3
Nhân số mới nhất trong kết quả với số chia và đặt kết quả của dưới số hạng tiếp theo trong số bị chia .
Bước 6.4
Cộng tích của phép nhân và số từ số bị chia sau đó đặt kết quả vào vị trí tiếp theo ở dòng kết quả.
Bước 6.5
Nhân số mới nhất trong kết quả với số chia và đặt kết quả của dưới số hạng tiếp theo trong số bị chia .
Bước 6.6
Cộng tích của phép nhân và số từ số bị chia sau đó đặt kết quả vào vị trí tiếp theo ở dòng kết quả.
Bước 6.7
Nhân số mới nhất trong kết quả với số chia và đặt kết quả của dưới số hạng tiếp theo trong số bị chia .
Bước 6.8
Cộng tích của phép nhân và số từ số bị chia sau đó đặt kết quả vào vị trí tiếp theo ở dòng kết quả.
Bước 6.9
Nhân số mới nhất trong kết quả với số chia và đặt kết quả của dưới số hạng tiếp theo trong số bị chia .
Bước 6.10
Cộng tích của phép nhân và số từ số bị chia sau đó đặt kết quả vào vị trí tiếp theo ở dòng kết quả.
Bước 6.11
Tất cả các số trừ số cuối cùng trở thành hệ số của đa thức thương. Giá trị cuối cùng trong dòng kết quả là số dư.
Bước 6.12
Rút gọn đa thức thương.
Bước 7
Bước 7.1
Nhóm hai số hạng đầu tiên và hai số hạng cuối.
Bước 7.2
Đưa ước số chung lớn nhất (ƯCLN) từ từng nhóm ra ngoài.
Bước 8
Phân tích đa thức thành thừa số bằng cách đưa ước số chung lớn nhất ra ngoài, .
Bước 9
Bước 9.1
Nhóm các số hạng lại lần nữa.
Bước 9.2
Đưa ra ngoài .
Bước 9.2.1
Đưa ra ngoài .
Bước 9.2.2
Đưa ra ngoài .
Bước 9.2.3
Đưa ra ngoài .
Bước 9.3
Viết lại ở dạng .
Bước 9.4
Giả sử . Thay cho tất cả các lần xuất hiện của .
Bước 9.5
Phân tích thành thừa số bằng cách nhóm.
Bước 9.5.1
Đối với đa thức có dạng , hãy viết lại số hạng ở giữa là tổng của hai số hạng có tích là và có tổng là .
Bước 9.5.1.1
Đưa ra ngoài .
Bước 9.5.1.2
Viết lại ở dạng cộng
Bước 9.5.1.3
Áp dụng thuộc tính phân phối.
Bước 9.5.2
Đưa ước số chung lớn nhất từ từng nhóm ra ngoài.
Bước 9.5.2.1
Nhóm hai số hạng đầu tiên và hai số hạng cuối.
Bước 9.5.2.2
Đưa ước số chung lớn nhất (ƯCLN) từ từng nhóm ra ngoài.
Bước 9.5.3
Phân tích đa thức thành thừa số bằng cách đưa ước số chung lớn nhất ra ngoài, .
Bước 9.6
Thay thế tất cả các lần xuất hiện của với .
Bước 9.7
Đưa ra ngoài .
Bước 9.7.1
Đưa ra ngoài .
Bước 9.7.2
Đưa ra ngoài .
Bước 9.7.3
Đưa ra ngoài .
Bước 9.8
Giả sử . Thay cho tất cả các lần xuất hiện của .
Bước 9.9
Phân tích thành thừa số bằng cách nhóm.
Bước 9.9.1
Sắp xếp lại các số hạng.
Bước 9.9.2
Đối với đa thức có dạng , hãy viết lại số hạng ở giữa là tổng của hai số hạng có tích là và có tổng là .
Bước 9.9.2.1
Đưa ra ngoài .
Bước 9.9.2.2
Viết lại ở dạng cộng
Bước 9.9.2.3
Áp dụng thuộc tính phân phối.
Bước 9.9.2.4
Nhân với .
Bước 9.9.3
Đưa ước số chung lớn nhất từ từng nhóm ra ngoài.
Bước 9.9.3.1
Nhóm hai số hạng đầu tiên và hai số hạng cuối.
Bước 9.9.3.2
Đưa ước số chung lớn nhất (ƯCLN) từ từng nhóm ra ngoài.
Bước 9.9.4
Phân tích đa thức thành thừa số bằng cách đưa ước số chung lớn nhất ra ngoài, .
Bước 9.10
Phân tích thành thừa số.
Bước 9.10.1
Thay thế tất cả các lần xuất hiện của với .
Bước 9.10.2
Loại bỏ các dấu ngoặc đơn không cần thiết.
Bước 10
Nếu bất kỳ thừa số riêng lẻ nào ở vế trái của phương trình bằng , toàn bộ biểu thức sẽ bằng .
Bước 11
Bước 11.1
Đặt bằng với .
Bước 11.2
Giải để tìm .
Bước 11.2.1
Trừ khỏi cả hai vế của phương trình.
Bước 11.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Bước 11.2.3
Rút gọn .
Bước 11.2.3.1
Viết lại ở dạng .
Bước 11.2.3.2
Viết lại ở dạng .
Bước 11.2.3.3
Viết lại ở dạng .
Bước 11.2.3.4
Viết lại ở dạng .
Bước 11.2.3.5
Đưa các số hạng dưới dấu căn ra ngoài, giả sử đó là các số thực dương.
Bước 11.2.3.6
Di chuyển sang phía bên trái của .
Bước 11.2.4
Đáp án hoàn chỉnh là kết quả của cả hai phần dương và âm của đáp án.
Bước 11.2.4.1
Đầu tiên, sử dụng giá trị dương của để tìm đáp án đầu tiên.
Bước 11.2.4.2
Tiếp theo, sử dụng giá trị âm của để tìm đáp án thứ hai.
Bước 11.2.4.3
Đáp án hoàn chỉnh là kết quả của cả hai phần dương và âm của đáp án.
Bước 12
Bước 12.1
Đặt bằng với .
Bước 12.2
Giải để tìm .
Bước 12.2.1
Trừ khỏi cả hai vế của phương trình.
Bước 12.2.2
Chia mỗi số hạng trong cho và rút gọn.
Bước 12.2.2.1
Chia mỗi số hạng trong cho .
Bước 12.2.2.2
Rút gọn vế trái.
Bước 12.2.2.2.1
Triệt tiêu thừa số chung .
Bước 12.2.2.2.1.1
Triệt tiêu thừa số chung.
Bước 12.2.2.2.1.2
Chia cho .
Bước 12.2.2.3
Rút gọn vế phải.
Bước 12.2.2.3.1
Di chuyển dấu trừ ra phía trước của phân số.
Bước 13
Bước 13.1
Đặt bằng với .
Bước 13.2
Cộng cho cả hai vế của phương trình.
Bước 14
Đáp án cuối cùng là tất cả các giá trị làm cho đúng.
Bước 15