Nhập bài toán...
Giải tích sơ cấp Ví dụ
Bước 1
Quy đổi bất đẳng thức thành một đẳng thức.
Bước 2
Bước 2.1
Để giải tìm , hãy viết lại phương trình bằng các tính chất của logarit.
Bước 2.2
Viết lại dưới dạng mũ bằng cách dùng định nghĩa của logarit. Nếu và là các số thực dương và , thì sẽ tương đương với .
Bước 2.3
Giải tìm .
Bước 2.3.1
Viết lại phương trình ở dạng .
Bước 2.3.2
Trừ khỏi cả hai vế của phương trình.
Bước 2.3.3
Chia mỗi số hạng trong cho và rút gọn.
Bước 2.3.3.1
Chia mỗi số hạng trong cho .
Bước 2.3.3.2
Rút gọn vế trái.
Bước 2.3.3.2.1
Triệt tiêu thừa số chung .
Bước 2.3.3.2.1.1
Triệt tiêu thừa số chung.
Bước 2.3.3.2.1.2
Chia cho .
Bước 2.3.3.3
Rút gọn vế phải.
Bước 2.3.3.3.1
Rút gọn mỗi số hạng.
Bước 2.3.3.3.1.1
Di chuyển dấu trừ ra phía trước của phân số.
Bước 2.3.3.3.1.2
Chia hai giá trị âm cho nhau sẽ có kết quả là một giá trị dương.
Bước 3
Bước 3.1
Đặt giá trị đối số trong lớn hơn để tìm nơi biểu thức xác định.
Bước 3.2
Giải tìm .
Bước 3.2.1
Trừ khỏi cả hai vế của bất đẳng thức.
Bước 3.2.2
Chia mỗi số hạng trong cho và rút gọn.
Bước 3.2.2.1
Chia mỗi số hạng trong cho . Khi nhân hoặc chia cả hai vế của một bất đẳng thức cho một giá trị âm, hãy đổi dấu của bất đẳng thức.
Bước 3.2.2.2
Rút gọn vế trái.
Bước 3.2.2.2.1
Triệt tiêu thừa số chung .
Bước 3.2.2.2.1.1
Triệt tiêu thừa số chung.
Bước 3.2.2.2.1.2
Chia cho .
Bước 3.2.2.3
Rút gọn vế phải.
Bước 3.2.2.3.1
Chia hai giá trị âm cho nhau sẽ có kết quả là một giá trị dương.
Bước 3.3
Tập xác định là tất cả các giá trị của và làm cho biểu thức xác định.
Bước 4
Đáp án bao gồm tất cả các khoảng thực sự.
Bước 5
Kết quả có thể được hiển thị ở nhiều dạng.
Dạng bất đẳng thức:
Ký hiệu khoảng:
Bước 6