Nhập bài toán...
Giải tích sơ cấp Ví dụ
Bước 1
Bước 1.1
Nhân mỗi số hạng trong với .
Bước 1.2
Rút gọn vế trái.
Bước 1.2.1
Sắp xếp lại và .
Bước 1.2.2
Áp dụng đẳng thức góc nhân đôi cho sin.
Bước 1.3
Rút gọn vế phải.
Bước 1.3.1
Triệt tiêu thừa số chung .
Bước 1.3.1.1
Đưa ra ngoài .
Bước 1.3.1.2
Triệt tiêu thừa số chung.
Bước 1.3.1.3
Viết lại biểu thức.
Bước 2
Lấy nghịch đảo sin của cả hai vế của phương trình để trích xuất từ trong hàm sin.
Bước 3
Bước 3.1
Giá trị chính xác của là .
Bước 4
Bước 4.1
Chia mỗi số hạng trong cho .
Bước 4.2
Rút gọn vế trái.
Bước 4.2.1
Triệt tiêu thừa số chung .
Bước 4.2.1.1
Triệt tiêu thừa số chung.
Bước 4.2.1.2
Chia cho .
Bước 4.3
Rút gọn vế phải.
Bước 4.3.1
Nhân tử số với nghịch đảo của mẫu số.
Bước 4.3.2
Nhân .
Bước 4.3.2.1
Nhân với .
Bước 4.3.2.2
Nhân với .
Bước 5
Hàm sin dương trong góc phần tư thứ nhất và thứ hai. Để tìm đáp án thứ hai, trừ góc tham chiếu khỏi để tìm đáp án trong góc phần tư thứ hai.
Bước 6
Bước 6.1
Rút gọn.
Bước 6.1.1
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 6.1.2
Kết hợp và .
Bước 6.1.3
Kết hợp các tử số trên mẫu số chung.
Bước 6.1.4
Trừ khỏi .
Bước 6.1.4.1
Sắp xếp lại và .
Bước 6.1.4.2
Trừ khỏi .
Bước 6.2
Chia mỗi số hạng trong cho và rút gọn.
Bước 6.2.1
Chia mỗi số hạng trong cho .
Bước 6.2.2
Rút gọn vế trái.
Bước 6.2.2.1
Triệt tiêu thừa số chung .
Bước 6.2.2.1.1
Triệt tiêu thừa số chung.
Bước 6.2.2.1.2
Chia cho .
Bước 6.2.3
Rút gọn vế phải.
Bước 6.2.3.1
Nhân tử số với nghịch đảo của mẫu số.
Bước 6.2.3.2
Nhân .
Bước 6.2.3.2.1
Nhân với .
Bước 6.2.3.2.2
Nhân với .
Bước 7
Bước 7.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 7.2
Thay thế với trong công thức cho chu kỳ.
Bước 7.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa và là .
Bước 7.4
Triệt tiêu thừa số chung .
Bước 7.4.1
Triệt tiêu thừa số chung.
Bước 7.4.2
Chia cho .
Bước 8
Chu kỳ của hàm là nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên