Nhập bài toán...
Đại số tuyến tính Ví dụ
[123257379]⎡⎢⎣123257379⎤⎥⎦
Bước 1
Bước 1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 11 by its cofactor and add.
Bước 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
Bước 1.1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Bước 1.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|5779|∣∣∣5779∣∣∣
Bước 1.1.4
Multiply element a11a11 by its cofactor.
1|5779|1∣∣∣5779∣∣∣
Bước 1.1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|2739|∣∣∣2739∣∣∣
Bước 1.1.6
Multiply element a12a12 by its cofactor.
-2|2739|−2∣∣∣2739∣∣∣
Bước 1.1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|2537|∣∣∣2537∣∣∣
Bước 1.1.8
Multiply element a13a13 by its cofactor.
3|2537|3∣∣∣2537∣∣∣
Bước 1.1.9
Add the terms together.
1|5779|-2|2739|+3|2537|1∣∣∣5779∣∣∣−2∣∣∣2739∣∣∣+3∣∣∣2537∣∣∣
1|5779|-2|2739|+3|2537|1∣∣∣5779∣∣∣−2∣∣∣2739∣∣∣+3∣∣∣2537∣∣∣
Bước 1.2
Tính |5779|∣∣∣5779∣∣∣.
Bước 1.2.1
Có thể tìm được định thức của một 2×22×2 ma trận bằng công thức |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
1(5⋅9-7⋅7)-2|2739|+3|2537|1(5⋅9−7⋅7)−2∣∣∣2739∣∣∣+3∣∣∣2537∣∣∣
Bước 1.2.2
Rút gọn định thức.
Bước 1.2.2.1
Rút gọn mỗi số hạng.
Bước 1.2.2.1.1
Nhân 55 với 9.
1(45-7⋅7)-2|2739|+3|2537|
Bước 1.2.2.1.2
Nhân -7 với 7.
1(45-49)-2|2739|+3|2537|
1(45-49)-2|2739|+3|2537|
Bước 1.2.2.2
Trừ 49 khỏi 45.
1⋅-4-2|2739|+3|2537|
1⋅-4-2|2739|+3|2537|
1⋅-4-2|2739|+3|2537|
Bước 1.3
Tính |2739|.
Bước 1.3.1
Có thể tìm được định thức của một 2×2 ma trận bằng công thức |abcd|=ad-cb.
1⋅-4-2(2⋅9-3⋅7)+3|2537|
Bước 1.3.2
Rút gọn định thức.
Bước 1.3.2.1
Rút gọn mỗi số hạng.
Bước 1.3.2.1.1
Nhân 2 với 9.
1⋅-4-2(18-3⋅7)+3|2537|
Bước 1.3.2.1.2
Nhân -3 với 7.
1⋅-4-2(18-21)+3|2537|
1⋅-4-2(18-21)+3|2537|
Bước 1.3.2.2
Trừ 21 khỏi 18.
1⋅-4-2⋅-3+3|2537|
1⋅-4-2⋅-3+3|2537|
1⋅-4-2⋅-3+3|2537|
Bước 1.4
Tính |2537|.
Bước 1.4.1
Có thể tìm được định thức của một 2×2 ma trận bằng công thức |abcd|=ad-cb.
1⋅-4-2⋅-3+3(2⋅7-3⋅5)
Bước 1.4.2
Rút gọn định thức.
Bước 1.4.2.1
Rút gọn mỗi số hạng.
Bước 1.4.2.1.1
Nhân 2 với 7.
1⋅-4-2⋅-3+3(14-3⋅5)
Bước 1.4.2.1.2
Nhân -3 với 5.
1⋅-4-2⋅-3+3(14-15)
1⋅-4-2⋅-3+3(14-15)
Bước 1.4.2.2
Trừ 15 khỏi 14.
1⋅-4-2⋅-3+3⋅-1
1⋅-4-2⋅-3+3⋅-1
1⋅-4-2⋅-3+3⋅-1
Bước 1.5
Rút gọn định thức.
Bước 1.5.1
Rút gọn mỗi số hạng.
Bước 1.5.1.1
Nhân -4 với 1.
-4-2⋅-3+3⋅-1
Bước 1.5.1.2
Nhân -2 với -3.
-4+6+3⋅-1
Bước 1.5.1.3
Nhân 3 với -1.
-4+6-3
-4+6-3
Bước 1.5.2
Cộng -4 và 6.
2-3
Bước 1.5.3
Trừ 3 khỏi 2.
-1
-1
-1
Bước 2
Since the determinant is non-zero, the inverse exists.
Bước 3
Set up a 3×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[123100257010379001]
Bước 4
Bước 4.1
Perform the row operation R2=R2-2R1 to make the entry at 2,1 a 0.
Bước 4.1.1
Perform the row operation R2=R2-2R1 to make the entry at 2,1 a 0.
[1231002-2⋅15-2⋅27-2⋅30-2⋅11-2⋅00-2⋅0379001]
Bước 4.1.2
Rút gọn R2.
[123100011-210379001]
[123100011-210379001]
Bước 4.2
Perform the row operation R3=R3-3R1 to make the entry at 3,1 a 0.
Bước 4.2.1
Perform the row operation R3=R3-3R1 to make the entry at 3,1 a 0.
[123100011-2103-3⋅17-3⋅29-3⋅30-3⋅10-3⋅01-3⋅0]
Bước 4.2.2
Rút gọn R3.
[123100011-210010-301]
[123100011-210010-301]
Bước 4.3
Perform the row operation R3=R3-R2 to make the entry at 3,2 a 0.
Bước 4.3.1
Perform the row operation R3=R3-R2 to make the entry at 3,2 a 0.
[123100011-2100-01-10-1-3+20-11-0]
Bước 4.3.2
Rút gọn R3.
[123100011-21000-1-1-11]
[123100011-21000-1-1-11]
Bước 4.4
Multiply each element of R3 by -1 to make the entry at 3,3 a 1.
Bước 4.4.1
Multiply each element of R3 by -1 to make the entry at 3,3 a 1.
[123100011-210-0-0--1--1--1-1⋅1]
Bước 4.4.2
Rút gọn R3.
[123100011-21000111-1]
[123100011-21000111-1]
Bước 4.5
Perform the row operation R2=R2-R3 to make the entry at 2,3 a 0.
Bước 4.5.1
Perform the row operation R2=R2-R3 to make the entry at 2,3 a 0.
[1231000-01-01-1-2-11-10+100111-1]
Bước 4.5.2
Rút gọn R2.
[123100010-30100111-1]
[123100010-30100111-1]
Bước 4.6
Perform the row operation R1=R1-3R3 to make the entry at 1,3 a 0.
Bước 4.6.1
Perform the row operation R1=R1-3R3 to make the entry at 1,3 a 0.
[1-3⋅02-3⋅03-3⋅11-3⋅10-3⋅10-3⋅-1010-30100111-1]
Bước 4.6.2
Rút gọn R1.
[120-2-33010-30100111-1]
[120-2-33010-30100111-1]
Bước 4.7
Perform the row operation R1=R1-2R2 to make the entry at 1,2 a 0.
Bước 4.7.1
Perform the row operation R1=R1-2R2 to make the entry at 1,2 a 0.
[1-2⋅02-2⋅10-2⋅0-2-2⋅-3-3-2⋅03-2⋅1010-30100111-1]
Bước 4.7.2
Rút gọn R1.
[1004-31010-30100111-1]
[1004-31010-30100111-1]
[1004-31010-30100111-1]
Bước 5
The right half of the reduced row echelon form is the inverse.
[4-31-30111-1]