Toán hữu hạn Ví dụ

Giải bằng cách Phân Tích Nhân Tử logarit cơ số 2 của x- logarit cơ số 2 của x-2=3
Bước 1
Trừ khỏi cả hai vế của phương trình.
Bước 2
Sử dụng tính chất thương của logarit, .
Bước 3
Cộng cho cả hai vế của phương trình.
Bước 4
Viết lại dưới dạng mũ bằng cách dùng định nghĩa của logarit. Nếu là các số thực dương và , thì sẽ tương đương với .
Bước 5
Giải tìm .
Nhấp để xem thêm các bước...
Bước 5.1
Viết lại phương trình ở dạng .
Bước 5.2
Nâng lên lũy thừa .
Bước 5.3
Tìm mẫu số chung nhỏ nhất của các số hạng trong phương trình.
Nhấp để xem thêm các bước...
Bước 5.3.1
Tìm MCNN của các giá trị cũng giống như tìm BCNN của các mẫu số của các giá trị đó.
Bước 5.3.2
Loại bỏ các dấu ngoặc đơn.
Bước 5.3.3
BCNN của một và bất kỳ biểu thức nào chính là biểu thức đó.
Bước 5.4
Nhân mỗi số hạng trong với để loại bỏ các phân số.
Nhấp để xem thêm các bước...
Bước 5.4.1
Nhân mỗi số hạng trong với .
Bước 5.4.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 5.4.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 5.4.2.1.1
Triệt tiêu thừa số chung.
Bước 5.4.2.1.2
Viết lại biểu thức.
Bước 5.4.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 5.4.3.1
Áp dụng thuộc tính phân phối.
Bước 5.4.3.2
Nhân với .
Bước 5.5
Giải phương trình.
Nhấp để xem thêm các bước...
Bước 5.5.1
Di chuyển tất cả các số hạng chứa sang vế trái của phương trình.
Nhấp để xem thêm các bước...
Bước 5.5.1.1
Trừ khỏi cả hai vế của phương trình.
Bước 5.5.1.2
Trừ khỏi .
Bước 5.5.2
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 5.5.2.1
Chia mỗi số hạng trong cho .
Bước 5.5.2.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 5.5.2.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 5.5.2.2.1.1
Triệt tiêu thừa số chung.
Bước 5.5.2.2.1.2
Chia cho .
Bước 5.5.2.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 5.5.2.3.1
Chia hai giá trị âm cho nhau sẽ có kết quả là một giá trị dương.