Toán hữu hạn Ví dụ

Giải bằng cách Phân Tích Nhân Tử 1/(xx)=x^9
1xx=x91xx=x9
Bước 1
Trừ x9x9 khỏi cả hai vế của phương trình.
1xx-x9=01xxx9=0
Bước 2
Nhân xx với xx.
1x2-x9=01x2x9=0
Bước 3
Để viết -x9x9 ở dạng một phân số với mẫu số chung, hãy nhân với x2x2x2x2.
1x2-x9x2x2=01x2x9x2x2=0
Bước 4
Kết hợp -x9x9x2x2x2x2.
1x2+-x9x2x2=01x2+x9x2x2=0
Bước 5
Kết hợp các tử số trên mẫu số chung.
1-x9x2x2=01x9x2x2=0
Bước 6
Nhân x9x9 với x2x2 bằng cách cộng các số mũ.
Nhấp để xem thêm các bước...
Bước 6.1
Di chuyển x2x2.
1-(x2x9)x2=01(x2x9)x2=0
Bước 6.2
Sử dụng quy tắc lũy thừa aman=am+naman=am+n để kết hợp các số mũ.
1-x2+9x2=01x2+9x2=0
Bước 6.3
Cộng 2299.
1-x11x2=01x11x2=0
1-x11x2=01x11x2=0
Bước 7
Cho tử bằng không.
1-x11=01x11=0
Bước 8
Giải phương trình để tìm xx.
Nhấp để xem thêm các bước...
Bước 8.1
Trừ 11 khỏi cả hai vế của phương trình.
-x11=-1x11=1
Bước 8.2
Chia mỗi số hạng trong -x11=-1x11=1 cho -11 và rút gọn.
Nhấp để xem thêm các bước...
Bước 8.2.1
Chia mỗi số hạng trong -x11=-1x11=1 cho -11.
-x11-1=-1-1x111=11
Bước 8.2.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 8.2.2.1
Chia hai giá trị âm cho nhau sẽ có kết quả là một giá trị dương.
x111=-1-1
Bước 8.2.2.2
Chia x11 cho 1.
x11=-1-1
x11=-1-1
Bước 8.2.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 8.2.3.1
Chia -1 cho -1.
x11=1
x11=1
x11=1
Bước 8.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=111
Bước 8.4
Bất cứ nghiệm nào của 1 đều là 1.
x=1
x=1
 [x2  12  π  xdx ]