Nhập bài toán...
Toán hữu hạn Ví dụ
π , 2π3 , π4 , 2π5
Bước 1
Sử dụng công thức để tìm trung bình nhân.
4√π⋅2π3⋅π4⋅2π5
Bước 2
Kết hợp π và 2π3.
4√π(2π)3⋅π42π5
Bước 3
Nhân π(2π)3 với π4.
4√π(2π)π3⋅4⋅2π5
Bước 4
Nhân π(2π)π3⋅4 với 2π5.
4√π(2π)π(2π)3⋅4⋅5
Bước 5
Bước 5.1
Nâng π lên lũy thừa 1.
4√2(π1π)π⋅2π3⋅4⋅5
Bước 5.2
Nâng π lên lũy thừa 1.
4√2(π1π1)π⋅2π3⋅4⋅5
Bước 5.3
Sử dụng quy tắc lũy thừa aman=am+n để kết hợp các số mũ.
4√2π1+1π⋅2π3⋅4⋅5
Bước 5.4
Cộng 1 và 1.
4√2π2π⋅2π3⋅4⋅5
Bước 5.5
Nâng π lên lũy thừa 1.
4√2(π1π2)⋅2π3⋅4⋅5
Bước 5.6
Sử dụng quy tắc lũy thừa aman=am+n để kết hợp các số mũ.
4√2π1+2⋅2π3⋅4⋅5
Bước 5.7
Cộng 1 và 2.
4√2π3⋅2π3⋅4⋅5
Bước 5.8
Nhân 2 với 2.
4√4π3π3⋅4⋅5
Bước 5.9
Nâng π lên lũy thừa 1.
4√4(π1π3)3⋅4⋅5
Bước 5.10
Sử dụng quy tắc lũy thừa aman=am+n để kết hợp các số mũ.
4√4π1+33⋅4⋅5
Bước 5.11
Cộng 1 và 3.
4√4π43⋅4⋅5
4√4π43⋅4⋅5
Bước 6
Bước 6.1
Triệt tiêu thừa số chung.
4√4π43⋅4⋅5
Bước 6.2
Viết lại biểu thức.
4√π43⋅5
4√π43⋅5
Bước 7
Nhân 3 với 5.
4√π415
Bước 8
Viết lại 4√π415 ở dạng 4√π44√15.
4√π44√15
Bước 9
Đưa các số hạng dưới dấu căn ra ngoài, giả sử đó là các số thực dương.
π4√15
Bước 10
Nhân π4√15 với 4√1534√153.
π4√15⋅4√1534√153
Bước 11
Bước 11.1
Nhân π4√15 với 4√1534√153.
π4√1534√154√153
Bước 11.2
Nâng 4√15 lên lũy thừa 1.
π4√1534√1514√153
Bước 11.3
Sử dụng quy tắc lũy thừa aman=am+n để kết hợp các số mũ.
π4√1534√151+3
Bước 11.4
Cộng 1 và 3.
π4√1534√154
Bước 11.5
Viết lại 4√154 ở dạng 15.
Bước 11.5.1
Sử dụng n√ax=axn để viết lại 4√15 ở dạng 1514.
π4√153(1514)4
Bước 11.5.2
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, (am)n=amn.
π4√1531514⋅4
Bước 11.5.3
Kết hợp 14 và 4.
π4√1531544
Bước 11.5.4
Triệt tiêu thừa số chung 4.
Bước 11.5.4.1
Triệt tiêu thừa số chung.
π4√1531544
Bước 11.5.4.2
Viết lại biểu thức.
π4√153151
π4√153151
Bước 11.5.5
Tính số mũ.
π4√15315
π4√15315
π4√15315
Bước 12
Bước 12.1
Viết lại 4√153 ở dạng 4√153.
π4√15315
Bước 12.2
Nâng 15 lên lũy thừa 3.
π4√337515
π4√337515
Bước 13
Tính xấp xỉ kết quả.
1.5963461
Bước 14
Trung bình nhân nên được làm tròn đến số chữ số thập phân nhiều hơn so với dữ liệu gốc. Nếu dữ liệu gốc bị trộn lẫn, làm tròn đến số chữ số thập phân nhiều hơn số chính xác thấp nhất.
1.6