Giải tích Ví dụ

Tìm Các Đường Tiệm Cận f(x)=(3x^3-x^2-48x+16)/(x^2+5x+4)
Bước 1
Tìm nơi biểu thức không xác định.
Bước 2
khi từ phía bên trái và khi từ phía bên phải, thì là một tiệm cận đứng.
Bước 3
Xét hàm số hữu tỉ trong đó là bậc của tử số và là bậc của mẫu số.
1. Nếu , thì trục x, , là tiệm cận ngang.
2. Nếu , thì tiệm cận ngang là đường .
3. Nếu , thì không có tiệm cận ngang (có một tiệm cận xiên).
Bước 4
Tìm .
Bước 5
, nên không có tiệm cận ngang.
Không có các tiệm cận ngang
Bước 6
Tìm tiệm cận xiên bằng cách sử dụng phép chia đa thức.
Nhấp để xem thêm các bước...
Bước 6.1
Rút gọn biểu thức.
Nhấp để xem thêm các bước...
Bước 6.1.1
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 6.1.1.1
Đưa ước số chung lớn nhất từ từng nhóm ra ngoài.
Nhấp để xem thêm các bước...
Bước 6.1.1.1.1
Nhóm hai số hạng đầu tiên và hai số hạng cuối.
Bước 6.1.1.1.2
Đưa ước số chung lớn nhất (ƯCLN) từ từng nhóm ra ngoài.
Bước 6.1.1.2
Phân tích đa thức thành thừa số bằng cách đưa ước số chung lớn nhất ra ngoài, .
Bước 6.1.1.3
Viết lại ở dạng .
Bước 6.1.1.4
Vì cả hai số hạng đều là số chính phương, nên ta phân tích thành thừa số bằng công thức hiệu của hai bình phương, trong đó .
Bước 6.1.2
Phân tích thành thừa số bằng phương pháp AC.
Nhấp để xem thêm các bước...
Bước 6.1.2.1
Xét dạng . Tìm một cặp số nguyên mà tích số của chúng là và tổng của chúng là . Trong trường hợp này, tích số của chúng là và tổng của chúng là .
Bước 6.1.2.2
Viết dạng đã được phân tích thành thừa số bằng các số nguyên này.
Bước 6.1.3
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 6.1.3.1
Triệt tiêu thừa số chung.
Bước 6.1.3.2
Viết lại biểu thức.
Bước 6.2
Khai triển .
Nhấp để xem thêm các bước...
Bước 6.2.1
Áp dụng thuộc tính phân phối.
Bước 6.2.2
Áp dụng thuộc tính phân phối.
Bước 6.2.3
Áp dụng thuộc tính phân phối.
Bước 6.2.4
Di chuyển .
Bước 6.2.5
Nâng lên lũy thừa .
Bước 6.2.6
Nâng lên lũy thừa .
Bước 6.2.7
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 6.2.8
Cộng .
Bước 6.2.9
Nhân với .
Bước 6.2.10
Nhân với .
Bước 6.2.11
Trừ khỏi .
Bước 6.3
Lập các đa thức được chia. Nếu không có đủ số hạng cho mọi số mũ, hãy chèn một số hạng có giá trị .
+-+
Bước 6.4
Chia số hạng bậc cao nhất trong biểu thức bị chia cho số hạng bậc cao nhất trong biểu thức chia .
+-+
Bước 6.5
Nhân số hạng thương số mới với số chia.
+-+
++
Bước 6.6
Biểu thức cần được trừ khỏi số bị chia, vì vậy hãy đổi tất cả các dấu trong
+-+
--
Bước 6.7
Sau khi đổi các dấu, cộng số bị chia cuối cùng của đa thức từ phép nhân để tìm số bị chia mới.
+-+
--
-
Bước 6.8
Đưa các số hạng tiếp theo từ biểu thức bị chia ban đầu xuống dưới biểu thức bị chia hiện tại.
+-+
--
-+
Bước 6.9
Chia số hạng bậc cao nhất trong biểu thức bị chia cho số hạng bậc cao nhất trong biểu thức chia .
-
+-+
--
-+
Bước 6.10
Nhân số hạng thương số mới với số chia.
-
+-+
--
-+
--
Bước 6.11
Biểu thức cần được trừ khỏi số bị chia, vì vậy hãy đổi tất cả các dấu trong
-
+-+
--
-+
++
Bước 6.12
Sau khi đổi các dấu, cộng số bị chia cuối cùng của đa thức từ phép nhân để tìm số bị chia mới.
-
+-+
--
-+
++
+
Bước 6.13
Đáp án cuối cùng là thương cộng với phần còn lại trên số chia.
Bước 6.14
Tách đáp án thành phần đa thức và phần số dư.
Bước 6.15
Tiệm cận xiên là phần đa thức của kết quả của phép chia số lớn.
Bước 7
Đây là tập hợp của tất cả các tiệm cận.
Các tiệm cận đứng:
Không có các tiệm cận ngang
Các tiệm cận xiên:
Bước 8