Giải tích Ví dụ

Tìm Các Điểm Uốn y=-sin(x)
Bước 1
Viết ở dạng một hàm số.
Bước 2
Tìm đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 2.1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 2.1.1
không đổi đối với , nên đạo hàm của đối với .
Bước 2.1.2
Đạo hàm của đối với .
Bước 2.2
Tìm đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 2.2.1
không đổi đối với , nên đạo hàm của đối với .
Bước 2.2.2
Đạo hàm của đối với .
Bước 2.2.3
Nhân.
Nhấp để xem thêm các bước...
Bước 2.2.3.1
Nhân với .
Bước 2.2.3.2
Nhân với .
Bước 2.3
Đạo hàm bậc hai của đối với .
Bước 3
Đặt đạo hàm bậc hai bằng sau đó giải phương trình .
Nhấp để xem thêm các bước...
Bước 3.1
Đặt đạo hàm bậc hai bằng .
Bước 3.2
Lấy nghịch đảo sin của cả hai vế của phương trình để trích xuất từ trong hàm sin.
Bước 3.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 3.3.1
Giá trị chính xác của .
Bước 3.4
Hàm sin dương trong góc phần tư thứ nhất và thứ hai. Để tìm đáp án thứ hai, trừ góc tham chiếu khỏi để tìm đáp án trong góc phần tư thứ hai.
Bước 3.5
Trừ khỏi .
Bước 3.6
Tìm chu kỳ của .
Nhấp để xem thêm các bước...
Bước 3.6.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 3.6.2
Thay thế với trong công thức cho chu kỳ.
Bước 3.6.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa .
Bước 3.6.4
Chia cho .
Bước 3.7
Chu kỳ của hàm nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên
Bước 3.8
Hợp nhất các câu trả lời.
, cho mọi số nguyên
, cho mọi số nguyên
Bước 4
Tìm điểm bằng cách thay thế trong . Điểm này có thể là một điểm uốn.
Bước 5
Tách thành các khoảng xung quanh các điểm có khả năng là các điểm uốn.
Bước 6
Thay một giá trị từ khoảng vào đạo hàm bậc hai để xác định xem hàm số tăng hay giảm.
Nhấp để xem thêm các bước...
Bước 6.1
Thay thế biến bằng trong biểu thức.
Bước 6.2
Câu trả lời cuối cùng là .
Bước 6.3
Tại , đạo hàm bậc hai là . Bởi vì đây là số âm, đạo hàm bậc hai giảm trên khoảng
Giảm trên
Giảm trên
Bước 7
Thay một giá trị từ khoảng vào đạo hàm bậc hai để xác định xem hàm số tăng hay giảm.
Nhấp để xem thêm các bước...
Bước 7.1
Thay thế biến bằng trong biểu thức.
Bước 7.2
Câu trả lời cuối cùng là .
Bước 7.3
Tại , đạo hàm bậc hai là . Vì số này dương, đạo hàm bậc hai tăng trên khoảng .
Tăng trên
Tăng trên
Bước 8
Điểm uốn là điểm nằm trên đường cong mà tại đó độ lõm đổi dấu từ cộng sang trừ hoặc từ trừ sang cộng. Điểm uốn trong trường hợp này là .
Bước 9