Giải tích Ví dụ

Tìm Các Điểm Uốn y=5x^4+3x^5
Bước 1
Viết ở dạng một hàm số.
Bước 2
Tìm đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 2.1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 2.1.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 2.1.2
Tính .
Nhấp để xem thêm các bước...
Bước 2.1.2.1
không đổi đối với , nên đạo hàm của đối với .
Bước 2.1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.1.2.3
Nhân với .
Bước 2.1.3
Tính .
Nhấp để xem thêm các bước...
Bước 2.1.3.1
không đổi đối với , nên đạo hàm của đối với .
Bước 2.1.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.1.3.3
Nhân với .
Bước 2.1.4
Sắp xếp lại các số hạng.
Bước 2.2
Tìm đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 2.2.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 2.2.2
Tính .
Nhấp để xem thêm các bước...
Bước 2.2.2.1
không đổi đối với , nên đạo hàm của đối với .
Bước 2.2.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.2.2.3
Nhân với .
Bước 2.2.3
Tính .
Nhấp để xem thêm các bước...
Bước 2.2.3.1
không đổi đối với , nên đạo hàm của đối với .
Bước 2.2.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.2.3.3
Nhân với .
Bước 2.3
Đạo hàm bậc hai của đối với .
Bước 3
Đặt đạo hàm bậc hai bằng sau đó giải phương trình .
Nhấp để xem thêm các bước...
Bước 3.1
Đặt đạo hàm bậc hai bằng .
Bước 3.2
Đưa ra ngoài .
Nhấp để xem thêm các bước...
Bước 3.2.1
Đưa ra ngoài .
Bước 3.2.2
Đưa ra ngoài .
Bước 3.2.3
Đưa ra ngoài .
Bước 3.3
Nếu bất kỳ thừa số riêng lẻ nào ở vế trái của phương trình bằng , toàn bộ biểu thức sẽ bằng .
Bước 3.4
Đặt bằng và giải tìm .
Nhấp để xem thêm các bước...
Bước 3.4.1
Đặt bằng với .
Bước 3.4.2
Giải để tìm .
Nhấp để xem thêm các bước...
Bước 3.4.2.1
Lấy căn đã chỉ định của cả hai vế của phương trình để loại bỏ số mũ ở vế trái.
Bước 3.4.2.2
Rút gọn .
Nhấp để xem thêm các bước...
Bước 3.4.2.2.1
Viết lại ở dạng .
Bước 3.4.2.2.2
Đưa các số hạng dưới dấu căn ra ngoài, giả sử đó là các số thực dương.
Bước 3.4.2.2.3
Cộng hoặc trừ .
Bước 3.5
Đặt bằng và giải tìm .
Nhấp để xem thêm các bước...
Bước 3.5.1
Đặt bằng với .
Bước 3.5.2
Trừ khỏi cả hai vế của phương trình.
Bước 3.6
Đáp án cuối cùng là tất cả các giá trị làm cho đúng.
Bước 4
Tìm các điểm mà tại đó đạo hàm bậc hai là .
Nhấp để xem thêm các bước...
Bước 4.1
Thay trong để tìm giá trị của .
Nhấp để xem thêm các bước...
Bước 4.1.1
Thay thế biến bằng trong biểu thức.
Bước 4.1.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 4.1.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 4.1.2.1.1
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 4.1.2.1.2
Nhân với .
Bước 4.1.2.1.3
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 4.1.2.1.4
Nhân với .
Bước 4.1.2.2
Cộng .
Bước 4.1.2.3
Câu trả lời cuối cùng là .
Bước 4.2
Tìm điểm bằng cách thay thế trong . Điểm này có thể là một điểm uốn.
Bước 4.3
Thay trong để tìm giá trị của .
Nhấp để xem thêm các bước...
Bước 4.3.1
Thay thế biến bằng trong biểu thức.
Bước 4.3.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 4.3.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 4.3.2.1.1
Nâng lên lũy thừa .
Bước 4.3.2.1.2
Nhân với .
Bước 4.3.2.1.3
Nâng lên lũy thừa .
Bước 4.3.2.1.4
Nhân với .
Bước 4.3.2.2
Trừ khỏi .
Bước 4.3.2.3
Câu trả lời cuối cùng là .
Bước 4.4
Tìm điểm bằng cách thay thế trong . Điểm này có thể là một điểm uốn.
Bước 4.5
Xác định các điểm có thể là điểm uốn.
Bước 5
Tách thành các khoảng xung quanh các điểm có khả năng là các điểm uốn.
Bước 6
Thay một giá trị từ khoảng vào đạo hàm bậc hai để xác định xem hàm số tăng hay giảm.
Nhấp để xem thêm các bước...
Bước 6.1
Thay thế biến bằng trong biểu thức.
Bước 6.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 6.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 6.2.1.1
Nâng lên lũy thừa .
Bước 6.2.1.2
Nhân với .
Bước 6.2.1.3
Nâng lên lũy thừa .
Bước 6.2.1.4
Nhân với .
Bước 6.2.2
Cộng .
Bước 6.2.3
Câu trả lời cuối cùng là .
Bước 6.3
Tại , đạo hàm bậc hai là . Bởi vì đây là số âm, đạo hàm bậc hai giảm trên khoảng
Giảm trên
Giảm trên
Bước 7
Thay một giá trị từ khoảng vào đạo hàm bậc hai để xác định xem hàm số tăng hay giảm.
Nhấp để xem thêm các bước...
Bước 7.1
Thay thế biến bằng trong biểu thức.
Bước 7.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 7.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 7.2.1.1
Sử dụng quy tắc lũy thừa để phân phối các số mũ.
Nhấp để xem thêm các bước...
Bước 7.2.1.1.1
Áp dụng quy tắc tích số cho .
Bước 7.2.1.1.2
Áp dụng quy tắc tích số cho .
Bước 7.2.1.2
Nâng lên lũy thừa .
Bước 7.2.1.3
Một mũ bất kỳ số nào là một.
Bước 7.2.1.4
Nâng lên lũy thừa .
Bước 7.2.1.5
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 7.2.1.5.1
Di chuyển dấu âm đầu tiên trong vào tử số.
Bước 7.2.1.5.2
Đưa ra ngoài .
Bước 7.2.1.5.3
Đưa ra ngoài .
Bước 7.2.1.5.4
Triệt tiêu thừa số chung.
Bước 7.2.1.5.5
Viết lại biểu thức.
Bước 7.2.1.6
Kết hợp .
Bước 7.2.1.7
Nhân với .
Bước 7.2.1.8
Di chuyển dấu trừ ra phía trước của phân số.
Bước 7.2.1.9
Sử dụng quy tắc lũy thừa để phân phối các số mũ.
Nhấp để xem thêm các bước...
Bước 7.2.1.9.1
Áp dụng quy tắc tích số cho .
Bước 7.2.1.9.2
Áp dụng quy tắc tích số cho .
Bước 7.2.1.10
Nâng lên lũy thừa .
Bước 7.2.1.11
Nhân với .
Bước 7.2.1.12
Một mũ bất kỳ số nào là một.
Bước 7.2.1.13
Nâng lên lũy thừa .
Bước 7.2.1.14
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 7.2.1.14.1
Đưa ra ngoài .
Bước 7.2.1.14.2
Triệt tiêu thừa số chung.
Bước 7.2.1.14.3
Viết lại biểu thức.
Bước 7.2.2
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 7.2.3
Kết hợp .
Bước 7.2.4
Kết hợp các tử số trên mẫu số chung.
Bước 7.2.5
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 7.2.5.1
Nhân với .
Bước 7.2.5.2
Cộng .
Bước 7.2.6
Câu trả lời cuối cùng là .
Bước 7.3
Tại , đạo hàm bậc hai là . Vì số này dương, đạo hàm bậc hai tăng trên khoảng .
Tăng trên
Tăng trên
Bước 8
Thay một giá trị từ khoảng vào đạo hàm bậc hai để xác định xem hàm số tăng hay giảm.
Nhấp để xem thêm các bước...
Bước 8.1
Thay thế biến bằng trong biểu thức.
Bước 8.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 8.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 8.2.1.1
Nâng lên lũy thừa .
Bước 8.2.1.2
Nhân với .
Bước 8.2.1.3
Nâng lên lũy thừa .
Bước 8.2.1.4
Nhân với .
Bước 8.2.2
Cộng .
Bước 8.2.3
Câu trả lời cuối cùng là .
Bước 8.3
Tại , đạo hàm bậc hai là . Vì số này dương, đạo hàm bậc hai tăng trên khoảng .
Tăng trên
Tăng trên
Bước 9
Điểm uốn là điểm nằm trên đường cong mà tại đó độ lõm đổi dấu từ cộng sang trừ hoặc từ trừ sang cộng. Điểm uốn trong trường hợp này là .
Bước 10