Giải tích Ví dụ

Tìm Độ Lõm y=x^(2/3)
Bước 1
Viết ở dạng một hàm số.
Bước 2
Find the values where the second derivative is equal to .
Nhấp để xem thêm các bước...
Bước 2.1
Tìm đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 2.1.1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 2.1.1.1
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.1.1.2
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 2.1.1.3
Kết hợp .
Bước 2.1.1.4
Kết hợp các tử số trên mẫu số chung.
Bước 2.1.1.5
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 2.1.1.5.1
Nhân với .
Bước 2.1.1.5.2
Trừ khỏi .
Bước 2.1.1.6
Di chuyển dấu trừ ra phía trước của phân số.
Bước 2.1.1.7
Rút gọn.
Nhấp để xem thêm các bước...
Bước 2.1.1.7.1
Viết lại biểu thức bằng quy tắc số mũ âm .
Bước 2.1.1.7.2
Nhân với .
Bước 2.1.2
Tìm đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 2.1.2.1
không đổi đối với , nên đạo hàm của đối với .
Bước 2.1.2.2
Áp dụng các quy tắc số mũ cơ bản.
Nhấp để xem thêm các bước...
Bước 2.1.2.2.1
Viết lại ở dạng .
Bước 2.1.2.2.2
Nhân các số mũ trong .
Nhấp để xem thêm các bước...
Bước 2.1.2.2.2.1
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 2.1.2.2.2.2
Kết hợp .
Bước 2.1.2.2.2.3
Di chuyển dấu trừ ra phía trước của phân số.
Bước 2.1.2.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.1.2.4
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 2.1.2.5
Kết hợp .
Bước 2.1.2.6
Kết hợp các tử số trên mẫu số chung.
Bước 2.1.2.7
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 2.1.2.7.1
Nhân với .
Bước 2.1.2.7.2
Trừ khỏi .
Bước 2.1.2.8
Di chuyển dấu trừ ra phía trước của phân số.
Bước 2.1.2.9
Kết hợp .
Bước 2.1.2.10
Nhân với .
Bước 2.1.2.11
Nhân.
Nhấp để xem thêm các bước...
Bước 2.1.2.11.1
Nhân với .
Bước 2.1.2.11.2
Di chuyển sang mẫu số bằng quy tắc số mũ âm .
Bước 2.1.3
Đạo hàm bậc hai của đối với .
Bước 2.2
Đặt đạo hàm bậc hai bằng sau đó giải phương trình .
Nhấp để xem thêm các bước...
Bước 2.2.1
Đặt đạo hàm bậc hai bằng .
Bước 2.2.2
Cho tử bằng không.
Bước 2.2.3
, nên không có đáp án.
Không có đáp án
Không có đáp án
Không có đáp án
Bước 3
Tìm tập xác định của .
Nhấp để xem thêm các bước...
Bước 3.1
Áp dụng quy tắc để viết lại dạng lũy thừa dưới dạng căn thức.
Bước 3.2
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Ký hiệu khoảng:
Ký hiệu xây dựng tập hợp:
Ký hiệu khoảng:
Ký hiệu xây dựng tập hợp:
Bước 4
Đồ thị lồi vì đạo hàm bậc hai âm.
Đồ thị có dạng lồi
Bước 5