Giải tích Ví dụ

Tìm Độ Lõm f(x)=7x+5x^-1
Bước 1
Find the values where the second derivative is equal to .
Nhấp để xem thêm các bước...
Bước 1.1
Tìm đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 1.1.1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 1.1.1.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.1.1.2
Tính .
Nhấp để xem thêm các bước...
Bước 1.1.1.2.1
không đổi đối với , nên đạo hàm của đối với .
Bước 1.1.1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.1.1.2.3
Nhân với .
Bước 1.1.1.3
Tính .
Nhấp để xem thêm các bước...
Bước 1.1.1.3.1
không đổi đối với , nên đạo hàm của đối với .
Bước 1.1.1.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.1.1.3.3
Nhân với .
Bước 1.1.1.4
Sắp xếp lại các số hạng.
Bước 1.1.2
Tìm đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 1.1.2.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.1.2.2
Tính .
Nhấp để xem thêm các bước...
Bước 1.1.2.2.1
không đổi đối với , nên đạo hàm của đối với .
Bước 1.1.2.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.1.2.2.3
Nhân với .
Bước 1.1.2.3
là hằng số đối với , đạo hàm của đối với .
Bước 1.1.2.4
Rút gọn.
Nhấp để xem thêm các bước...
Bước 1.1.2.4.1
Cộng .
Bước 1.1.2.4.2
Viết lại biểu thức bằng quy tắc số mũ âm .
Bước 1.1.2.4.3
Kết hợp .
Bước 1.1.3
Đạo hàm bậc hai của đối với .
Bước 1.2
Đặt đạo hàm bậc hai bằng sau đó giải phương trình .
Nhấp để xem thêm các bước...
Bước 1.2.1
Đặt đạo hàm bậc hai bằng .
Bước 1.2.2
Cho tử bằng không.
Bước 1.2.3
, nên không có đáp án.
Không có đáp án
Không có đáp án
Không có đáp án
Bước 2
Tìm tập xác định của .
Nhấp để xem thêm các bước...
Bước 2.1
Đặt cơ số trong bằng để tìm nơi biểu thức không xác định.
Bước 2.2
Tập xác định là tất cả các giá trị của và làm cho biểu thức xác định.
Ký hiệu khoảng:
Ký hiệu xây dựng tập hợp:
Ký hiệu khoảng:
Ký hiệu xây dựng tập hợp:
Bước 3
Tạo các khoảng quanh giá trị có đạo hàm bậc hai bằng không hoặc không xác định.
Bước 4
Thay bất kỳ số nào từ khoảng vào đạo hàm bậc hai và tính để xác định độ lõm.
Nhấp để xem thêm các bước...
Bước 4.1
Thay thế biến bằng trong biểu thức.
Bước 4.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 4.2.1
Nâng lên lũy thừa .
Bước 4.2.2
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 4.2.2.1
Đưa ra ngoài .
Bước 4.2.2.2
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 4.2.2.2.1
Đưa ra ngoài .
Bước 4.2.2.2.2
Triệt tiêu thừa số chung.
Bước 4.2.2.2.3
Viết lại biểu thức.
Bước 4.2.3
Di chuyển dấu trừ ra phía trước của phân số.
Bước 4.2.4
Câu trả lời cuối cùng là .
Bước 4.3
Đồ thị lồi trên khoảng âm.
Lồi trên âm
Lồi trên âm
Bước 5
Thay bất kỳ số nào từ khoảng vào đạo hàm bậc hai và tính để xác định độ lõm.
Nhấp để xem thêm các bước...
Bước 5.1
Thay thế biến bằng trong biểu thức.
Bước 5.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 5.2.1
Nâng lên lũy thừa .
Bước 5.2.2
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 5.2.2.1
Đưa ra ngoài .
Bước 5.2.2.2
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 5.2.2.2.1
Đưa ra ngoài .
Bước 5.2.2.2.2
Triệt tiêu thừa số chung.
Bước 5.2.2.2.3
Viết lại biểu thức.
Bước 5.2.3
Câu trả lời cuối cùng là .
Bước 5.3
Đồ thị lõm trong khoảng dương.
Lõm trên dương
Lõm trên dương
Bước 6
Đồ thị lồi khi đạo hàm bậc hai âm và lõm khi đạo hàm bậc hai dương.
Lồi trên âm
Lõm trên dương
Bước 7