Giải tích Ví dụ

Tìm Độ Lõm y=x-sin(x)
Bước 1
Viết ở dạng một hàm số.
Bước 2
Find the values where the second derivative is equal to .
Nhấp để xem thêm các bước...
Bước 2.1
Tìm đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 2.1.1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 2.1.1.1
Tìm đạo hàm.
Nhấp để xem thêm các bước...
Bước 2.1.1.1.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 2.1.1.1.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.1.1.2
Tính .
Nhấp để xem thêm các bước...
Bước 2.1.1.2.1
không đổi đối với , nên đạo hàm của đối với .
Bước 2.1.1.2.2
Đạo hàm của đối với .
Bước 2.1.2
Tìm đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 2.1.2.1
Tìm đạo hàm.
Nhấp để xem thêm các bước...
Bước 2.1.2.1.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 2.1.2.1.2
là hằng số đối với , đạo hàm của đối với .
Bước 2.1.2.2
Tính .
Nhấp để xem thêm các bước...
Bước 2.1.2.2.1
không đổi đối với , nên đạo hàm của đối với .
Bước 2.1.2.2.2
Đạo hàm của đối với .
Bước 2.1.2.2.3
Nhân với .
Bước 2.1.2.2.4
Nhân với .
Bước 2.1.2.3
Cộng .
Bước 2.1.3
Đạo hàm bậc hai của đối với .
Bước 2.2
Đặt đạo hàm bậc hai bằng sau đó giải phương trình .
Nhấp để xem thêm các bước...
Bước 2.2.1
Đặt đạo hàm bậc hai bằng .
Bước 2.2.2
Lấy nghịch đảo sin của cả hai vế của phương trình để trích xuất từ trong hàm sin.
Bước 2.2.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 2.2.3.1
Giá trị chính xác của .
Bước 2.2.4
Hàm sin dương trong góc phần tư thứ nhất và thứ hai. Để tìm đáp án thứ hai, trừ góc tham chiếu khỏi để tìm đáp án trong góc phần tư thứ hai.
Bước 2.2.5
Trừ khỏi .
Bước 2.2.6
Tìm chu kỳ của .
Nhấp để xem thêm các bước...
Bước 2.2.6.1
Chu kỳ của hàm số có thể được tính bằng .
Bước 2.2.6.2
Thay thế với trong công thức cho chu kỳ.
Bước 2.2.6.3
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa .
Bước 2.2.6.4
Chia cho .
Bước 2.2.7
Chu kỳ của hàm nên các giá trị sẽ lặp lại sau mỗi radian theo cả hai hướng.
, cho mọi số nguyên
Bước 2.2.8
Hợp nhất các câu trả lời.
, cho mọi số nguyên
, cho mọi số nguyên
, cho mọi số nguyên
Bước 3
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Ký hiệu khoảng:
Ký hiệu xây dựng tập hợp:
Bước 4
Tạo các khoảng quanh giá trị có đạo hàm bậc hai bằng không hoặc không xác định.
Bước 5
Thay bất kỳ số nào từ khoảng vào đạo hàm bậc hai và tính để xác định độ lõm.
Nhấp để xem thêm các bước...
Bước 5.1
Thay thế biến bằng trong biểu thức.
Bước 5.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 5.2.1
Giá trị chính xác của .
Bước 5.2.2
Câu trả lời cuối cùng là .
Bước 5.3
Đồ thị lõm trong khoảng dương.
Lõm trên dương
Lõm trên dương
Bước 6