Giải tích Ví dụ

Tìm Nơi Thỏa Điều Kiện của Định Lý Giá Trị Trung Bình y=3x^3-2x , (1,1)
,
Bước 1
Nếu liên tục trên khoảng và khả vi trên , thì ít nhất một số thực tồn tại trong khoảng sao cho . Định lý giá trị trung bình biểu thị mối liên hệ giữa hệ số góc của tiếp tuyến với đường cong tại và hệ số góc của đường thẳng đi qua các điểm .
Nếu liên tục trên
và nếu khả vi trên ,
thì tồn tại ít nhất một điểm, trong : .
Bước 2
Kiểm tra xem có liên tục không.
Nhấp để xem thêm các bước...
Bước 2.1
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Ký hiệu khoảng:
Ký hiệu xây dựng tập hợp:
Bước 2.2
liên tục trên .
Hàm số liên tục.
Hàm số liên tục.
Bước 3
Tìm đạo hàm.
Nhấp để xem thêm các bước...
Bước 3.1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 3.1.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 3.1.2
Tính .
Nhấp để xem thêm các bước...
Bước 3.1.2.1
không đổi đối với , nên đạo hàm của đối với .
Bước 3.1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 3.1.2.3
Nhân với .
Bước 3.1.3
Tính .
Nhấp để xem thêm các bước...
Bước 3.1.3.1
không đổi đối với , nên đạo hàm của đối với .
Bước 3.1.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 3.1.3.3
Nhân với .
Bước 3.2
Đạo hàm bậc nhất của đối với .
Bước 4
Find if the derivative is continuous on No solution.
Nhấp để xem thêm các bước...
Bước 4.1
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Ký hiệu khoảng:
Ký hiệu xây dựng tập hợp:
Bước 4.2
liên tục trên .
Hàm số liên tục.
Hàm số liên tục.
Bước 5
Hàm số khả vi trên vì đạo hàm liên tục trên .
Hàm số này khả vi.
Bước 6
thỏa hai điều kiện của định lý giá trị trung bình. Nó liên tục trên và khả vi trên .
Không có đáp án
Bước 7
Tính từ khoảng .
Nhấp để xem thêm các bước...
Bước 7.1
Thay thế biến bằng trong biểu thức.
Bước 7.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 7.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 7.2.1.1
Một mũ bất kỳ số nào là một.
Bước 7.2.1.2
Nhân với .
Bước 7.2.1.3
Nhân với .
Bước 7.2.2
Trừ khỏi .
Bước 7.2.3
Câu trả lời cuối cùng là .
Bước 8
Phương trình này có một phân số không xác định
Không xác định
Bước 9
There are no solution, so there is no value where the tangent line is parallel to the line that passes through the end points and .
No x value found where the tangent line at x is parallel to the line that passes through the end points and
Bước 10