Nhập bài toán...
Giải tích Ví dụ
,
Bước 1
Nếu liên tục trên khoảng và khả vi trên , thì ít nhất một số thực tồn tại trong khoảng sao cho . Định lý giá trị trung bình biểu thị mối liên hệ giữa hệ số góc của tiếp tuyến với đường cong tại và hệ số góc của đường thẳng đi qua các điểm và .
Nếu liên tục trên
và nếu khả vi trên ,
thì tồn tại ít nhất một điểm, trong : .
Bước 2
Bước 2.1
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Ký hiệu khoảng:
Ký hiệu xây dựng tập hợp:
Bước 2.2
liên tục trên .
Hàm số liên tục.
Hàm số liên tục.
Bước 3
Bước 3.1
Tìm đạo hàm bậc một.
Bước 3.1.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 3.1.2
Tính .
Bước 3.1.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 3.1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 3.1.2.3
Nhân với .
Bước 3.1.3
Tìm đạo hàm bằng quy tắc hằng số.
Bước 3.1.3.1
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 3.1.3.2
Cộng và .
Bước 3.2
Đạo hàm bậc nhất của đối với là .
Bước 4
Bước 4.1
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Ký hiệu khoảng:
Ký hiệu xây dựng tập hợp:
Bước 4.2
liên tục trên .
Hàm số liên tục.
Hàm số liên tục.
Bước 5
Hàm số khả vi trên vì đạo hàm liên tục trên .
Hàm số này khả vi.
Bước 6
thỏa hai điều kiện của định lý giá trị trung bình. Nó liên tục trên và khả vi trên .
liên tục trên và khả vi trên .
Bước 7
Bước 7.1
Thay thế biến bằng trong biểu thức.
Bước 7.2
Rút gọn kết quả.
Bước 7.2.1
Nhân với .
Bước 7.2.2
Trừ khỏi .
Bước 7.2.3
Câu trả lời cuối cùng là .
Bước 8
Bước 8.1
Thay thế biến bằng trong biểu thức.
Bước 8.2
Rút gọn kết quả.
Bước 8.2.1
Nhân với .
Bước 8.2.2
Trừ khỏi .
Bước 8.2.3
Câu trả lời cuối cùng là .
Bước 9
Bước 9.1
Rút gọn .
Bước 9.1.1
Rút gọn tử số.
Bước 9.1.1.1
Nhân với .
Bước 9.1.1.2
Trừ khỏi .
Bước 9.1.2
Rút gọn mẫu số.
Bước 9.1.2.1
Nhân với .
Bước 9.1.2.2
Trừ khỏi .
Bước 9.1.3
Chia cho .
Bước 9.2
Vì , phương trình luôn đúng.
Luôn đúng
Luôn đúng
Bước 10
Đồ thị là một đường thẳng. có một đường tiếp tuyến tại mỗi trên đường cong, song song với đường thẳng đi qua các điểm cuối và .
Có một đường tiếp tuyến tại mọi điểm x trên đường cong, song song với đường thẳng đi qua các điểm cuối và
Bước 11