Giải tích Ví dụ

Tìm Nơi Thỏa Điều Kiện của Định Lý Giá Trị Trung Bình y=9-x^2 , [-3,3]
,
Bước 1
Sắp xếp lại .
Bước 2
Nếu liên tục trên khoảng và khả vi trên , thì ít nhất một số thực tồn tại trong khoảng sao cho . Định lý giá trị trung bình biểu thị mối liên hệ giữa hệ số góc của tiếp tuyến với đường cong tại và hệ số góc của đường thẳng đi qua các điểm .
Nếu liên tục trên
và nếu khả vi trên ,
thì tồn tại ít nhất một điểm, trong : .
Bước 3
Kiểm tra xem có liên tục không.
Nhấp để xem thêm các bước...
Bước 3.1
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Ký hiệu khoảng:
Ký hiệu xây dựng tập hợp:
Bước 3.2
liên tục trên .
Hàm số liên tục.
Hàm số liên tục.
Bước 4
Tìm đạo hàm.
Nhấp để xem thêm các bước...
Bước 4.1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 4.1.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 4.1.2
Tính .
Nhấp để xem thêm các bước...
Bước 4.1.2.1
không đổi đối với , nên đạo hàm của đối với .
Bước 4.1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 4.1.2.3
Nhân với .
Bước 4.1.3
Tìm đạo hàm bằng quy tắc hằng số.
Nhấp để xem thêm các bước...
Bước 4.1.3.1
là hằng số đối với , đạo hàm của đối với .
Bước 4.1.3.2
Cộng .
Bước 4.2
Đạo hàm bậc nhất của đối với .
Bước 5
Tìm nếu đạo hàm liên tục trên .
Nhấp để xem thêm các bước...
Bước 5.1
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Ký hiệu khoảng:
Ký hiệu xây dựng tập hợp:
Bước 5.2
liên tục trên .
Hàm số liên tục.
Hàm số liên tục.
Bước 6
Hàm số khả vi trên vì đạo hàm liên tục trên .
Hàm số này khả vi.
Bước 7
thỏa hai điều kiện của định lý giá trị trung bình. Nó liên tục trên và khả vi trên .
liên tục trên và khả vi trên .
Bước 8
Tính từ khoảng .
Nhấp để xem thêm các bước...
Bước 8.1
Thay thế biến bằng trong biểu thức.
Bước 8.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 8.2.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 8.2.1.1
Nâng lên lũy thừa .
Bước 8.2.1.2
Nhân với .
Bước 8.2.2
Cộng .
Bước 8.2.3
Câu trả lời cuối cùng là .
Bước 9
Giải để tìm . .
Nhấp để xem thêm các bước...
Bước 9.1
Rút gọn.
Nhấp để xem thêm các bước...
Bước 9.1.1
Nhân với .
Bước 9.1.2
Nhân với .
Bước 9.1.3
Rút gọn biểu thức bằng cách triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 9.1.3.1
Đưa ra ngoài .
Bước 9.1.3.2
Đưa ra ngoài .
Bước 9.1.3.3
Đưa ra ngoài .
Bước 9.1.3.4
Đưa ra ngoài .
Bước 9.1.3.5
Đưa ra ngoài .
Bước 9.1.3.6
Đưa ra ngoài .
Bước 9.1.3.7
Triệt tiêu thừa số chung.
Bước 9.1.3.8
Viết lại biểu thức.
Bước 9.1.4
Cộng .
Bước 9.1.5
Cộng .
Bước 9.1.6
Chia cho .
Bước 9.2
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 9.2.1
Chia mỗi số hạng trong cho .
Bước 9.2.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 9.2.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 9.2.2.1.1
Triệt tiêu thừa số chung.
Bước 9.2.2.1.2
Chia cho .
Bước 9.2.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 9.2.3.1
Chia cho .
Bước 10
Tìm được một đường tiếp tuyến tại song song với đường thẳng đi qua các điểm cuối .
Có một đường tiếp tuyến tại song song với đường thẳng đi qua các điểm cuối
Bước 11