Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Tìm đạo hàm bậc một.
Bước 1.1.1
Tìm đạo hàm.
Bước 1.1.1.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.1.1.2
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 1.1.2
Tính .
Bước 1.1.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.1.2.2
Đạo hàm của đối với là .
Bước 1.1.3
Trừ khỏi .
Bước 1.2
Đạo hàm bậc nhất của đối với là .
Bước 2
Bước 2.1
Cho đạo hàm bằng .
Bước 2.2
Cho tử bằng không.
Bước 2.3
Loại bỏ đáp án không làm cho đúng.
Bước 3
Không có giá trị nào của trong tập xác định của bài toán ban đầu có đạo hàm bằng hoặc không xác định.
Không tìm được điểm cực trị nào
Bước 4
Bước 4.1
Đặt mẫu số trong bằng để tìm nơi biểu thức không xác định.
Bước 4.2
Giải tìm .
Bước 4.2.1
Loại bỏ số hạng chứa giá trị tuyệt đối. Điều này tạo ra một ở vế phải của phương trình vì .
Bước 4.2.2
Cộng hoặc trừ là .
Bước 5
Sau khi tìm điểm khiến cho đạo hàm bằng với hoặc không xác định, sử dụng khoảng để kiểm tra nơi tăng và nơi nó giảm là .
Bước 6
Bước 6.1
Thay thế biến bằng trong biểu thức.
Bước 6.2
Rút gọn kết quả.
Bước 6.2.1
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa và là .
Bước 6.2.2
Chia cho .
Bước 6.2.3
Câu trả lời cuối cùng là .
Bước 6.3
Tại đạo hàm là . Vì đây là số dương, hàm số tăng trên .
Tăng trên vì
Tăng trên vì
Bước 7
Bước 7.1
Thay thế biến bằng trong biểu thức.
Bước 7.2
Rút gọn kết quả.
Bước 7.2.1
Giá trị tuyệt đối là khoảng cách giữa một số và số 0. Khoảng cách giữa và là .
Bước 7.2.2
Triệt tiêu thừa số chung .
Bước 7.2.2.1
Triệt tiêu thừa số chung.
Bước 7.2.2.2
Viết lại biểu thức.
Bước 7.2.3
Nhân với .
Bước 7.2.4
Câu trả lời cuối cùng là .
Bước 7.3
Tại đạo hàm là . Vì đây là số âm, hàm số giảm trên .
Giảm trên vì
Giảm trên vì
Bước 8
Liệt kê các khoảng trong đó hàm tăng và giảm.
Tăng trên:
Giảm trên:
Bước 9