Giải tích Ví dụ

Tìm Đường Tiếp Tuyến Ngang y=x^3+3
Bước 1
Thiết lập ở dạng một hàm số của .
Bước 2
Tìm đạo hàm.
Nhấp để xem thêm các bước...
Bước 2.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.3
là hằng số đối với , đạo hàm của đối với .
Bước 2.4
Cộng .
Bước 3
Đặt đạo hàm bằng sau đó giải phương trình .
Nhấp để xem thêm các bước...
Bước 3.1
Chia mỗi số hạng trong cho và rút gọn.
Nhấp để xem thêm các bước...
Bước 3.1.1
Chia mỗi số hạng trong cho .
Bước 3.1.2
Rút gọn vế trái.
Nhấp để xem thêm các bước...
Bước 3.1.2.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 3.1.2.1.1
Triệt tiêu thừa số chung.
Bước 3.1.2.1.2
Chia cho .
Bước 3.1.3
Rút gọn vế phải.
Nhấp để xem thêm các bước...
Bước 3.1.3.1
Chia cho .
Bước 3.2
Lấy căn đã chỉ định của cả hai vế của phương trình để loại bỏ số mũ ở vế trái.
Bước 3.3
Rút gọn .
Nhấp để xem thêm các bước...
Bước 3.3.1
Viết lại ở dạng .
Bước 3.3.2
Đưa các số hạng dưới dấu căn ra ngoài, giả sử đó là các số thực dương.
Bước 3.3.3
Cộng hoặc trừ .
Bước 4
Giải hàm số ban đầu tại .
Nhấp để xem thêm các bước...
Bước 4.1
Thay thế biến bằng trong biểu thức.
Bước 4.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 4.2.1
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 4.2.2
Cộng .
Bước 4.2.3
Câu trả lời cuối cùng là .
Bước 5
Đường tiếp tuyến ngang của hàm .
Bước 6