Nhập bài toán...
Giải tích Ví dụ
Bước 1
Thiết lập ở dạng một hàm số của .
Bước 2
Bước 2.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 2.2
Tính .
Bước 2.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.2.3
Nhân với .
Bước 2.3
Tính .
Bước 2.3.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.3.3
Nhân với .
Bước 2.4
Tìm đạo hàm bằng quy tắc hằng số.
Bước 2.4.1
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 2.4.2
Cộng và .
Bước 3
Bước 3.1
Cộng cho cả hai vế của phương trình.
Bước 3.2
Chia mỗi số hạng trong cho và rút gọn.
Bước 3.2.1
Chia mỗi số hạng trong cho .
Bước 3.2.2
Rút gọn vế trái.
Bước 3.2.2.1
Triệt tiêu thừa số chung .
Bước 3.2.2.1.1
Triệt tiêu thừa số chung.
Bước 3.2.2.1.2
Chia cho .
Bước 3.2.3
Rút gọn vế phải.
Bước 3.2.3.1
Chia cho .
Bước 4
Bước 4.1
Thay thế biến bằng trong biểu thức.
Bước 4.2
Rút gọn kết quả.
Bước 4.2.1
Rút gọn mỗi số hạng.
Bước 4.2.1.1
Nâng lên lũy thừa .
Bước 4.2.1.2
Nhân với .
Bước 4.2.1.3
Nhân với .
Bước 4.2.2
Rút gọn bằng cách cộng các số.
Bước 4.2.2.1
Cộng và .
Bước 4.2.2.2
Cộng và .
Bước 4.2.3
Câu trả lời cuối cùng là .
Bước 5
Đường tiếp tuyến ngang của hàm là .
Bước 6