Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Tìm đạo hàm bậc một.
Bước 1.1.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.1.2
Tính .
Bước 1.1.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.1.2.3
Nhân với .
Bước 1.1.3
Tìm đạo hàm bằng quy tắc hằng số.
Bước 1.1.3.1
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 1.1.3.2
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 1.1.4
Kết hợp các số hạng.
Bước 1.1.4.1
Cộng và .
Bước 1.1.4.2
Cộng và .
Bước 1.2
Đạo hàm bậc nhất của đối với là .
Bước 2
Bước 2.1
Cho đạo hàm bằng .
Bước 2.2
Chia mỗi số hạng trong cho và rút gọn.
Bước 2.2.1
Chia mỗi số hạng trong cho .
Bước 2.2.2
Rút gọn vế trái.
Bước 2.2.2.1
Triệt tiêu thừa số chung .
Bước 2.2.2.1.1
Triệt tiêu thừa số chung.
Bước 2.2.2.1.2
Chia cho .
Bước 2.2.3
Rút gọn vế phải.
Bước 2.2.3.1
Chia cho .
Bước 2.3
Lấy căn đã chỉ định của cả hai vế của phương trình để loại bỏ số mũ ở vế trái.
Bước 2.4
Rút gọn .
Bước 2.4.1
Viết lại ở dạng .
Bước 2.4.2
Đưa các số hạng dưới dấu căn ra ngoài, giả sử đó là các số thực dương.
Bước 2.4.3
Cộng hoặc trừ là .
Bước 3
Bước 3.1
Tính giá trị tại .
Bước 3.1.1
Thay bằng .
Bước 3.1.2
Rút gọn.
Bước 3.1.2.1
Rút gọn mỗi số hạng.
Bước 3.1.2.1.1
Nhân với .
Bước 3.1.2.1.2
Nhân với .
Bước 3.1.2.2
Cộng và .
Bước 3.2
Liệt kê tất cả các điểm.
Bước 4