Giải tích Ví dụ

Ước Tính Bằng Cách Sử Dụng Công Thức Tổng tổng từ n=1 đến infinity của (-1/3)^(n-1)
Bước 1
Tổng của một chuỗi cấp số nhân vô hạng được xác định bằng công thức với là số hạng đầu và là tỉ số giữa hai số hạng kề nhau.
Bước 2
Tìm tỉ số giữa các số hạng liền kề bằng cách thế vào công thức và rút gọn.
Nhấp để xem thêm các bước...
Bước 2.1
Thay vào công thức cho .
Bước 2.2
Rút gọn.
Nhấp để xem thêm các bước...
Bước 2.2.1
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 2.2.1.1
Đưa ra ngoài .
Bước 2.2.1.2
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 2.2.1.2.1
Nhân với .
Bước 2.2.1.2.2
Triệt tiêu thừa số chung.
Bước 2.2.1.2.3
Viết lại biểu thức.
Bước 2.2.1.2.4
Chia cho .
Bước 2.2.2
Cộng .
Bước 2.2.3
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 2.2.3.1
Áp dụng thuộc tính phân phối.
Bước 2.2.3.2
Nhân với .
Bước 2.2.4
Trừ khỏi .
Bước 2.2.5
Cộng .
Bước 2.2.6
Rút gọn.
Bước 3
Since , the series converges.
Bước 4
Tìm số hạng đầu tiên trong chuỗi bằng cách thay biên dưới vào và rút gọn.
Nhấp để xem thêm các bước...
Bước 4.1
Thay cho vào .
Bước 4.2
Rút gọn.
Nhấp để xem thêm các bước...
Bước 4.2.1
Trừ khỏi .
Bước 4.2.2
Sử dụng quy tắc lũy thừa để phân phối các số mũ.
Nhấp để xem thêm các bước...
Bước 4.2.2.1
Áp dụng quy tắc tích số cho .
Bước 4.2.2.2
Áp dụng quy tắc tích số cho .
Bước 4.2.3
Bất kỳ đại lượng nào mũ lên đều là .
Bước 4.2.4
Nhân với .
Bước 4.2.5
Bất kỳ đại lượng nào mũ lên đều là .
Bước 4.2.6
Bất kỳ đại lượng nào mũ lên đều là .
Bước 4.2.7
Chia cho .
Bước 5
Thế giá trị của công bội và của số hạng đầu vào công thức tính tổng.
Bước 6
Rút gọn.
Nhấp để xem thêm các bước...
Bước 6.1
Rút gọn mẫu số.
Nhấp để xem thêm các bước...
Bước 6.1.1
Nhân .
Nhấp để xem thêm các bước...
Bước 6.1.1.1
Nhân với .
Bước 6.1.1.2
Nhân với .
Bước 6.1.2
Viết ở dạng một phân số với một mẫu số chung.
Bước 6.1.3
Kết hợp các tử số trên mẫu số chung.
Bước 6.1.4
Cộng .
Bước 6.2
Nhân tử số với nghịch đảo của mẫu số.
Bước 6.3
Nhân với .