Giải tích Ví dụ

Tìm Diện Tích Dưới Đường Cong y=x^4 , [2,3]
,
Bước 1
Giải bằng phương pháp thay thế để tìm phần giao giữa hai đường cong.
Nhấp để xem thêm các bước...
Bước 1.1
Loại bỏ các vế bằng nhau của mỗi phương trình sau đó kết hợp.
Bước 1.2
Giải để tìm .
Nhấp để xem thêm các bước...
Bước 1.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Bước 1.2.2
Rút gọn .
Nhấp để xem thêm các bước...
Bước 1.2.2.1
Viết lại ở dạng .
Bước 1.2.2.2
Đưa các số hạng dưới dấu căn ra ngoài, giả sử đó là các số thực dương.
Bước 1.2.2.3
Cộng hoặc trừ .
Bước 1.3
Thay bằng .
Bước 1.4
Đáp án cho hệ là tập hợp đầy đủ của các cặp có thứ tự cũng chính là các đáp án hợp lệ.
Bước 2
Diện tích của vùng giữa các đường cong được xác định bằng tích phân của đường cong trên trừ đi tích phân của đường cong dưới trên mỗi vùng. Các vùng được xác định bởi các giao điểm của các đường cong. Điều này có thể được thực hiện theo phương pháp đại số hoặc phương pháp vẽ đồ thị.
Bước 3
Lấy tích phân để tìm diện tích giữa .
Nhấp để xem thêm các bước...
Bước 3.1
Kết hợp các tích phân thành một tích phân.
Bước 3.2
Trừ khỏi .
Bước 3.3
Theo Quy tắc lũy thừa, tích phân của đối với .
Bước 3.4
Thay và rút gọn.
Nhấp để xem thêm các bước...
Bước 3.4.1
Tính tại và tại .
Bước 3.4.2
Rút gọn.
Nhấp để xem thêm các bước...
Bước 3.4.2.1
Nâng lên lũy thừa .
Bước 3.4.2.2
Kết hợp .
Bước 3.4.2.3
Nâng lên lũy thừa .
Bước 3.4.2.4
Nhân với .
Bước 3.4.2.5
Kết hợp .
Bước 3.4.2.6
Di chuyển dấu trừ ra phía trước của phân số.
Bước 3.4.2.7
Kết hợp các tử số trên mẫu số chung.
Bước 3.4.2.8
Trừ khỏi .
Bước 4