Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Tìm nơi biểu thức không xác định.
Bước 1.2
Vì khi từ phía bên trái và khi từ phía bên phải, thì là một tiệm cận đứng.
Bước 1.3
Vì khi từ phía bên trái và khi từ phía bên phải, thì là một tiệm cận đứng.
Bước 1.4
Liệt kê tất cả các tiệm cận đứng:
Bước 1.5
Bỏ qua logarit, xét hàm số hữu tỉ trong đó là bậc của tử số và là bậc của mẫu số.
1. Nếu , thì trục x, , là tiệm cận ngang.
2. Nếu , thì tiệm cận ngang là đường .
3. Nếu , thì không có tiệm cận ngang (có một tiệm cận xiên).
Bước 1.6
Tìm và .
Bước 1.7
Vì , trục x, , là tiệm cận ngang.
Bước 1.8
Không có tiệm cận xiên nào tồn tại cho các hàm logarit và hàm lượng giác.
Không có các tiệm cận xiên
Bước 1.9
Đây là tập hợp của tất cả các tiệm cận.
Các tiệm cận đứng:
Các tiệm cận ngang:
Các tiệm cận đứng:
Các tiệm cận ngang:
Bước 2
Bước 2.1
Thay thế biến bằng trong biểu thức.
Bước 2.2
Rút gọn kết quả.
Bước 2.2.1
Rút gọn bằng cách di chuyển trong logarit.
Bước 2.2.2
Nâng lên lũy thừa .
Bước 2.2.3
Câu trả lời cuối cùng là .
Bước 2.3
Quy đổi thành số thập phân.
Bước 3
Bước 3.1
Thay thế biến bằng trong biểu thức.
Bước 3.2
Rút gọn kết quả.
Bước 3.2.1
Triệt tiêu thừa số chung của và .
Bước 3.2.1.1
Đưa ra ngoài .
Bước 3.2.1.2
Triệt tiêu các thừa số chung.
Bước 3.2.1.2.1
Đưa ra ngoài .
Bước 3.2.1.2.2
Triệt tiêu thừa số chung.
Bước 3.2.1.2.3
Viết lại biểu thức.
Bước 3.2.2
Câu trả lời cuối cùng là .
Bước 3.3
Quy đổi thành số thập phân.
Bước 4
Hàm logarit có thể được vẽ bằng tiệm cận đứng tại và các điểm .
Tiệm cận đứng:
Bước 5