Nhập bài toán...
Giải tích Ví dụ
Bước 1
Viết ở dạng một hàm số.
Bước 2
Bước 2.1
Tìm đạo hàm bậc một.
Bước 2.1.1
Tìm đạo hàm.
Bước 2.1.1.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 2.1.1.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.1.2
Tính .
Bước 2.1.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.1.2.3
Nhân với .
Bước 2.2
Tìm đạo hàm bậc hai.
Bước 2.2.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 2.2.2
Tính .
Bước 2.2.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.2.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.2.2.3
Nhân với .
Bước 2.2.3
Tính .
Bước 2.2.3.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.2.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.2.3.3
Nhân với .
Bước 2.3
Đạo hàm bậc hai của đối với là .
Bước 3
Bước 3.1
Đặt đạo hàm bậc hai bằng .
Bước 3.2
Trừ khỏi cả hai vế của phương trình.
Bước 3.3
Chia mỗi số hạng trong cho và rút gọn.
Bước 3.3.1
Chia mỗi số hạng trong cho .
Bước 3.3.2
Rút gọn vế trái.
Bước 3.3.2.1
Triệt tiêu thừa số chung .
Bước 3.3.2.1.1
Triệt tiêu thừa số chung.
Bước 3.3.2.1.2
Chia cho .
Bước 3.3.3
Rút gọn vế phải.
Bước 3.3.3.1
Chia cho .
Bước 4
Bước 4.1
Thay trong để tìm giá trị của .
Bước 4.1.1
Thay thế biến bằng trong biểu thức.
Bước 4.1.2
Rút gọn kết quả.
Bước 4.1.2.1
Rút gọn mỗi số hạng.
Bước 4.1.2.1.1
Nâng lên lũy thừa .
Bước 4.1.2.1.2
Nâng lên lũy thừa .
Bước 4.1.2.1.3
Nhân với .
Bước 4.1.2.2
Cộng và .
Bước 4.1.2.3
Câu trả lời cuối cùng là .
Bước 4.2
Tìm điểm bằng cách thay thế trong là . Điểm này có thể là một điểm uốn.
Bước 5
Tách thành các khoảng xung quanh các điểm có khả năng là các điểm uốn.
Bước 6
Bước 6.1
Thay thế biến bằng trong biểu thức.
Bước 6.2
Rút gọn kết quả.
Bước 6.2.1
Nhân với .
Bước 6.2.2
Cộng và .
Bước 6.2.3
Câu trả lời cuối cùng là .
Bước 6.3
Tại , đạo hàm bậc hai là . Bởi vì đây là số âm, đạo hàm bậc hai giảm trên khoảng
Giảm trên vì
Giảm trên vì
Bước 7
Bước 7.1
Thay thế biến bằng trong biểu thức.
Bước 7.2
Rút gọn kết quả.
Bước 7.2.1
Nhân với .
Bước 7.2.2
Cộng và .
Bước 7.2.3
Câu trả lời cuối cùng là .
Bước 7.3
Tại , đạo hàm bậc hai là . Vì số này dương, đạo hàm bậc hai tăng trên khoảng .
Tăng trên vì
Tăng trên vì
Bước 8
Điểm uốn là điểm nằm trên đường cong mà tại đó độ lõm đổi dấu từ cộng sang trừ hoặc từ trừ sang cộng. Điểm uốn trong trường hợp này là .
Bước 9