Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Tìm đạo hàm.
Bước 1.1.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.1.2
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 1.2
Tính .
Bước 1.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.2.3
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 1.2.4
Kết hợp và .
Bước 1.2.5
Kết hợp các tử số trên mẫu số chung.
Bước 1.2.6
Rút gọn tử số.
Bước 1.2.6.1
Nhân với .
Bước 1.2.6.2
Trừ khỏi .
Bước 1.2.7
Di chuyển dấu trừ ra phía trước của phân số.
Bước 1.2.8
Kết hợp và .
Bước 1.2.9
Di chuyển sang mẫu số bằng quy tắc số mũ âm .
Bước 1.3
Trừ khỏi .
Bước 2
Bước 2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.2
Áp dụng các quy tắc số mũ cơ bản.
Bước 2.2.1
Viết lại ở dạng .
Bước 2.2.2
Nhân các số mũ trong .
Bước 2.2.2.1
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 2.2.2.2
Kết hợp và .
Bước 2.2.2.3
Di chuyển dấu trừ ra phía trước của phân số.
Bước 2.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.4
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 2.5
Kết hợp và .
Bước 2.6
Kết hợp các tử số trên mẫu số chung.
Bước 2.7
Rút gọn tử số.
Bước 2.7.1
Nhân với .
Bước 2.7.2
Trừ khỏi .
Bước 2.8
Di chuyển dấu trừ ra phía trước của phân số.
Bước 2.9
Kết hợp và .
Bước 2.10
Nhân.
Bước 2.10.1
Nhân với .
Bước 2.10.2
Nhân với .
Bước 2.11
Nhân với .
Bước 2.12
Nhân.
Bước 2.12.1
Nhân với .
Bước 2.12.2
Di chuyển sang mẫu số bằng quy tắc số mũ âm .
Bước 3
Để tìm các giá trị cực đại địa phương và cực tiểu địa phương của hàm số, đặt đạo hàm bằng và giải.
Bước 4
Bước 4.1
Tìm đạo hàm bậc một.
Bước 4.1.1
Tìm đạo hàm.
Bước 4.1.1.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 4.1.1.2
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 4.1.2
Tính .
Bước 4.1.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 4.1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 4.1.2.3
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 4.1.2.4
Kết hợp và .
Bước 4.1.2.5
Kết hợp các tử số trên mẫu số chung.
Bước 4.1.2.6
Rút gọn tử số.
Bước 4.1.2.6.1
Nhân với .
Bước 4.1.2.6.2
Trừ khỏi .
Bước 4.1.2.7
Di chuyển dấu trừ ra phía trước của phân số.
Bước 4.1.2.8
Kết hợp và .
Bước 4.1.2.9
Di chuyển sang mẫu số bằng quy tắc số mũ âm .
Bước 4.1.3
Trừ khỏi .
Bước 4.2
Đạo hàm bậc nhất của đối với là .
Bước 5
Bước 5.1
Cho đạo hàm bằng .
Bước 5.2
Cho tử bằng không.
Bước 5.3
Vì , nên không có đáp án.
Không có đáp án
Không có đáp án
Bước 6
Bước 6.1
Chuyển đổi các biểu thức có số mũ dạng phân số thành các căn thức
Bước 6.1.1
Áp dụng quy tắc để viết lại dạng lũy thừa dưới dạng căn thức.
Bước 6.1.2
Bất kỳ đại lượng nào mũ lên đều là chính nó.
Bước 6.2
Đặt mẫu số trong bằng để tìm nơi biểu thức không xác định.
Bước 6.3
Giải tìm .
Bước 6.3.1
Để loại bỏ dấu căn ở vế trái của phương trình, lấy mũ ba cả hai vế của phương trình.
Bước 6.3.2
Rút gọn mỗi vế của phương trình.
Bước 6.3.2.1
Sử dụng để viết lại ở dạng .
Bước 6.3.2.2
Rút gọn vế trái.
Bước 6.3.2.2.1
Rút gọn .
Bước 6.3.2.2.1.1
Áp dụng quy tắc tích số cho .
Bước 6.3.2.2.1.2
Nâng lên lũy thừa .
Bước 6.3.2.2.1.3
Nhân các số mũ trong .
Bước 6.3.2.2.1.3.1
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 6.3.2.2.1.3.2
Triệt tiêu thừa số chung .
Bước 6.3.2.2.1.3.2.1
Triệt tiêu thừa số chung.
Bước 6.3.2.2.1.3.2.2
Viết lại biểu thức.
Bước 6.3.2.2.1.4
Rút gọn.
Bước 6.3.2.3
Rút gọn vế phải.
Bước 6.3.2.3.1
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 6.3.3
Chia mỗi số hạng trong cho và rút gọn.
Bước 6.3.3.1
Chia mỗi số hạng trong cho .
Bước 6.3.3.2
Rút gọn vế trái.
Bước 6.3.3.2.1
Triệt tiêu thừa số chung .
Bước 6.3.3.2.1.1
Triệt tiêu thừa số chung.
Bước 6.3.3.2.1.2
Chia cho .
Bước 6.3.3.3
Rút gọn vế phải.
Bước 6.3.3.3.1
Chia cho .
Bước 7
Các điểm cực trị cần tính.
Bước 8
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 9
Bước 9.1
Rút gọn biểu thức.
Bước 9.1.1
Viết lại ở dạng .
Bước 9.1.2
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 9.2
Triệt tiêu thừa số chung .
Bước 9.2.1
Triệt tiêu thừa số chung.
Bước 9.2.2
Viết lại biểu thức.
Bước 9.3
Rút gọn biểu thức.
Bước 9.3.1
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 9.3.2
Nhân với .
Bước 9.3.3
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 9.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Không xác định
Bước 10
Bước 10.1
Chia thành các khoảng riêng biệt xung quanh các giá trị và làm cho đạo hàm bậc nhất hoặc không xác định.
Bước 10.2
Thay bất kỳ số nào, chẳng hạn như , từ khoảng trong đạo hàm đầu tiên để kiểm tra xem kết quả là âm hay dương.
Bước 10.2.1
Thay thế biến bằng trong biểu thức.
Bước 10.2.2
Câu trả lời cuối cùng là .
Bước 10.3
Thay bất kỳ số nào, chẳng hạn như , từ khoảng trong đạo hàm đầu tiên để kiểm tra xem kết quả là âm hay dương.
Bước 10.3.1
Thay thế biến bằng trong biểu thức.
Bước 10.3.2
Rút gọn kết quả.
Bước 10.3.2.1
Di chuyển sang tử số bằng quy tắc số mũ âm .
Bước 10.3.2.2
Nhân với bằng cách cộng các số mũ.
Bước 10.3.2.2.1
Nhân với .
Bước 10.3.2.2.1.1
Nâng lên lũy thừa .
Bước 10.3.2.2.1.2
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 10.3.2.2.2
Viết ở dạng một phân số với một mẫu số chung.
Bước 10.3.2.2.3
Kết hợp các tử số trên mẫu số chung.
Bước 10.3.2.2.4
Trừ khỏi .
Bước 10.3.2.3
Câu trả lời cuối cùng là .
Bước 10.4
Vì đạo hàm bậc nhất đổi dấu từ dương sang âm xung quanh , nên là một cực đại địa phương.
là cực đại địa phương
là cực đại địa phương
Bước 11