Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.2
Tính .
Bước 1.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 1.2.2
Tìm đạo hàm bằng cách sử dụng quy tắc tích số, quy tắc nói rằng là trong đó và .
Bước 1.2.3
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng là trong đó =.
Bước 1.2.4
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 1.2.5
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 1.2.6
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 1.2.7
Cộng và .
Bước 1.2.8
Nhân với .
Bước 1.3
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 1.4
Rút gọn.
Bước 1.4.1
Áp dụng thuộc tính phân phối.
Bước 1.4.2
Áp dụng thuộc tính phân phối.
Bước 1.4.3
Kết hợp các số hạng.
Bước 1.4.3.1
Nhân với .
Bước 1.4.3.2
Trừ khỏi .
Bước 1.4.3.3
Cộng và .
Bước 1.4.4
Sắp xếp lại các số hạng.
Bước 1.4.5
Sắp xếp lại các thừa số trong .
Bước 2
Bước 2.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 2.2
Tính .
Bước 2.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.2.2
Tìm đạo hàm bằng cách sử dụng quy tắc tích số, quy tắc nói rằng là trong đó và .
Bước 2.2.3
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng là trong đó =.
Bước 2.2.4
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2.2.5
Nhân với .
Bước 2.3
Tính .
Bước 2.3.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 2.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng là trong đó =.
Bước 2.4
Rút gọn.
Bước 2.4.1
Áp dụng thuộc tính phân phối.
Bước 2.4.2
Cộng và .
Bước 2.4.3
Sắp xếp lại các số hạng.
Bước 2.4.4
Sắp xếp lại các thừa số trong .
Bước 3
Để tìm các giá trị cực đại địa phương và cực tiểu địa phương của hàm số, đặt đạo hàm bằng và giải.
Bước 4
Bước 4.1
Tìm đạo hàm bậc một.
Bước 4.1.1
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 4.1.2
Tính .
Bước 4.1.2.1
Vì không đổi đối với , nên đạo hàm của đối với là .
Bước 4.1.2.2
Tìm đạo hàm bằng cách sử dụng quy tắc tích số, quy tắc nói rằng là trong đó và .
Bước 4.1.2.3
Tìm đạo hàm bằng cách sử dụng Quy tắc mũ, quy tắc nói rằng là trong đó =.
Bước 4.1.2.4
Theo Quy tắc tổng, đạo hàm của đối với là .
Bước 4.1.2.5
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 4.1.2.6
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 4.1.2.7
Cộng và .
Bước 4.1.2.8
Nhân với .
Bước 4.1.3
Vì là hằng số đối với , đạo hàm của đối với là .
Bước 4.1.4
Rút gọn.
Bước 4.1.4.1
Áp dụng thuộc tính phân phối.
Bước 4.1.4.2
Áp dụng thuộc tính phân phối.
Bước 4.1.4.3
Kết hợp các số hạng.
Bước 4.1.4.3.1
Nhân với .
Bước 4.1.4.3.2
Trừ khỏi .
Bước 4.1.4.3.3
Cộng và .
Bước 4.1.4.4
Sắp xếp lại các số hạng.
Bước 4.1.4.5
Sắp xếp lại các thừa số trong .
Bước 4.2
Đạo hàm bậc nhất của đối với là .
Bước 5
Bước 5.1
Cho đạo hàm bằng .
Bước 5.2
Đưa ra ngoài .
Bước 5.2.1
Đưa ra ngoài .
Bước 5.2.2
Đưa ra ngoài .
Bước 5.2.3
Đưa ra ngoài .
Bước 5.3
Nếu bất kỳ thừa số riêng lẻ nào ở vế trái của phương trình bằng , toàn bộ biểu thức sẽ bằng .
Bước 5.4
Đặt bằng và giải tìm .
Bước 5.4.1
Đặt bằng với .
Bước 5.4.2
Giải để tìm .
Bước 5.4.2.1
Lấy logarit tự nhiên của cả hai vế của phương trình để loại bỏ biến khỏi số mũ.
Bước 5.4.2.2
Không thể giải phương trình vì không xác định.
Không xác định
Bước 5.4.2.3
Không có đáp án nào cho
Không có đáp án
Không có đáp án
Không có đáp án
Bước 5.5
Đặt bằng và giải tìm .
Bước 5.5.1
Đặt bằng với .
Bước 5.5.2
Giải để tìm .
Bước 5.5.2.1
Trừ khỏi cả hai vế của phương trình.
Bước 5.5.2.2
Chia mỗi số hạng trong cho và rút gọn.
Bước 5.5.2.2.1
Chia mỗi số hạng trong cho .
Bước 5.5.2.2.2
Rút gọn vế trái.
Bước 5.5.2.2.2.1
Chia hai giá trị âm cho nhau sẽ có kết quả là một giá trị dương.
Bước 5.5.2.2.2.2
Chia cho .
Bước 5.5.2.2.3
Rút gọn vế phải.
Bước 5.5.2.2.3.1
Chia cho .
Bước 5.6
Đáp án cuối cùng là tất cả các giá trị làm cho đúng.
Bước 6
Bước 6.1
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Bước 7
Các điểm cực trị cần tính.
Bước 8
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 9
Cộng và .
Bước 10
là một cực đại địa phương vì giá trị của đạo hàm bậc hai âm. Đây được gọi là phép kiểm định đạo hàm bậc hai.
là cực đại địa phương
Bước 11
Bước 11.1
Thay thế biến bằng trong biểu thức.
Bước 11.2
Rút gọn kết quả.
Bước 11.2.1
Rút gọn mỗi số hạng.
Bước 11.2.1.1
Trừ khỏi .
Bước 11.2.1.2
Nhân với .
Bước 11.2.1.3
Nhân với .
Bước 11.2.2
Câu trả lời cuối cùng là .
Bước 12
Đây là những cực trị địa phương cho .
là một cực đại địa phuơng
Bước 13