Giải tích Ví dụ

Tìm Cực Đại Địa Phương và Cực Tiểu Địa Phương f(x)=1/(x^2)
Bước 1
Tìm đạo hàm bậc một của hàm số.
Nhấp để xem thêm các bước...
Bước 1.1
Áp dụng các quy tắc số mũ cơ bản.
Nhấp để xem thêm các bước...
Bước 1.1.1
Viết lại ở dạng .
Bước 1.1.2
Nhân các số mũ trong .
Nhấp để xem thêm các bước...
Bước 1.1.2.1
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 1.1.2.2
Nhân với .
Bước 1.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.3
Rút gọn.
Nhấp để xem thêm các bước...
Bước 1.3.1
Viết lại biểu thức bằng quy tắc số mũ âm .
Bước 1.3.2
Kết hợp các số hạng.
Nhấp để xem thêm các bước...
Bước 1.3.2.1
Kết hợp .
Bước 1.3.2.2
Di chuyển dấu trừ ra phía trước của phân số.
Bước 2
Tìm đạo hàm bậc hai của hàm số.
Nhấp để xem thêm các bước...
Bước 2.1
không đổi đối với , nên đạo hàm của đối với .
Bước 2.2
Áp dụng các quy tắc số mũ cơ bản.
Nhấp để xem thêm các bước...
Bước 2.2.1
Viết lại ở dạng .
Bước 2.2.2
Nhân các số mũ trong .
Nhấp để xem thêm các bước...
Bước 2.2.2.1
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 2.2.2.2
Nhân với .
Bước 2.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.4
Nhân với .
Bước 2.5
Rút gọn.
Nhấp để xem thêm các bước...
Bước 2.5.1
Viết lại biểu thức bằng quy tắc số mũ âm .
Bước 2.5.2
Kết hợp .
Bước 3
Để tìm các giá trị cực đại địa phương và cực tiểu địa phương của hàm số, đặt đạo hàm bằng và giải.
Bước 4
Vì không có giá trị nào của làm cho đạo hàm bậc nhất bằng , nên không có cực trị địa phương.
Không có cực trị địa phương
Bước 5
Không có cực trị địa phương
Bước 6