Giải tích Ví dụ

Tìm Cực Đại Địa Phương và Cực Tiểu Địa Phương (x^2-4)^2
Bước 1
Viết ở dạng một hàm số.
Bước 2
Tìm đạo hàm bậc một của hàm số.
Nhấp để xem thêm các bước...
Bước 2.1
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 2.1.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 2.1.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.1.3
Thay thế tất cả các lần xuất hiện của với .
Bước 2.2
Tìm đạo hàm.
Nhấp để xem thêm các bước...
Bước 2.2.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 2.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.2.3
là hằng số đối với , đạo hàm của đối với .
Bước 2.2.4
Rút gọn biểu thức.
Nhấp để xem thêm các bước...
Bước 2.2.4.1
Cộng .
Bước 2.2.4.2
Nhân với .
Bước 2.3
Rút gọn.
Nhấp để xem thêm các bước...
Bước 2.3.1
Áp dụng thuộc tính phân phối.
Bước 2.3.2
Áp dụng thuộc tính phân phối.
Bước 2.3.3
Kết hợp các số hạng.
Nhấp để xem thêm các bước...
Bước 2.3.3.1
Nâng lên lũy thừa .
Bước 2.3.3.2
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 2.3.3.3
Cộng .
Bước 2.3.3.4
Nhân với .
Bước 3
Tìm đạo hàm bậc hai của hàm số.
Nhấp để xem thêm các bước...
Bước 3.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 3.2
Tính .
Nhấp để xem thêm các bước...
Bước 3.2.1
không đổi đối với , nên đạo hàm của đối với .
Bước 3.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 3.2.3
Nhân với .
Bước 3.3
Tính .
Nhấp để xem thêm các bước...
Bước 3.3.1
không đổi đối với , nên đạo hàm của đối với .
Bước 3.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 3.3.3
Nhân với .
Bước 4
Để tìm các giá trị cực đại địa phương và cực tiểu địa phương của hàm số, đặt đạo hàm bằng và giải.
Bước 5
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 5.1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 5.1.1
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 5.1.1.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 5.1.1.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 5.1.1.3
Thay thế tất cả các lần xuất hiện của với .
Bước 5.1.2
Tìm đạo hàm.
Nhấp để xem thêm các bước...
Bước 5.1.2.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 5.1.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 5.1.2.3
là hằng số đối với , đạo hàm của đối với .
Bước 5.1.2.4
Rút gọn biểu thức.
Nhấp để xem thêm các bước...
Bước 5.1.2.4.1
Cộng .
Bước 5.1.2.4.2
Nhân với .
Bước 5.1.3
Rút gọn.
Nhấp để xem thêm các bước...
Bước 5.1.3.1
Áp dụng thuộc tính phân phối.
Bước 5.1.3.2
Áp dụng thuộc tính phân phối.
Bước 5.1.3.3
Kết hợp các số hạng.
Nhấp để xem thêm các bước...
Bước 5.1.3.3.1
Nâng lên lũy thừa .
Bước 5.1.3.3.2
Sử dụng quy tắc lũy thừa để kết hợp các số mũ.
Bước 5.1.3.3.3
Cộng .
Bước 5.1.3.3.4
Nhân với .
Bước 5.2
Đạo hàm bậc nhất của đối với .
Bước 6
Cho đạo hàm bằng rồi giải phương trình .
Nhấp để xem thêm các bước...
Bước 6.1
Cho đạo hàm bằng .
Bước 6.2
Phân tích vế trái của phương trình thành thừa số.
Nhấp để xem thêm các bước...
Bước 6.2.1
Đưa ra ngoài .
Nhấp để xem thêm các bước...
Bước 6.2.1.1
Đưa ra ngoài .
Bước 6.2.1.2
Đưa ra ngoài .
Bước 6.2.1.3
Đưa ra ngoài .
Bước 6.2.2
Viết lại ở dạng .
Bước 6.2.3
Phân tích thành thừa số.
Nhấp để xem thêm các bước...
Bước 6.2.3.1
Vì cả hai số hạng đều là số chính phương, nên ta phân tích thành thừa số bằng công thức hiệu của hai bình phương, trong đó .
Bước 6.2.3.2
Loại bỏ các dấu ngoặc đơn không cần thiết.
Bước 6.3
Nếu bất kỳ thừa số riêng lẻ nào ở vế trái của phương trình bằng , toàn bộ biểu thức sẽ bằng .
Bước 6.4
Đặt bằng với .
Bước 6.5
Đặt bằng và giải tìm .
Nhấp để xem thêm các bước...
Bước 6.5.1
Đặt bằng với .
Bước 6.5.2
Trừ khỏi cả hai vế của phương trình.
Bước 6.6
Đặt bằng và giải tìm .
Nhấp để xem thêm các bước...
Bước 6.6.1
Đặt bằng với .
Bước 6.6.2
Cộng cho cả hai vế của phương trình.
Bước 6.7
Đáp án cuối cùng là tất cả các giá trị làm cho đúng.
Bước 7
Tìm các giá trị có đạo hàm tại đó không xác định.
Nhấp để xem thêm các bước...
Bước 7.1
Tập xác định của biểu thức là tất cả các số thực trừ trường hợp biểu thức không xác định. Trong trường hợp này, không có số thực nào làm cho biểu thức không xác định.
Bước 8
Các điểm cực trị cần tính.
Bước 9
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 10
Tính đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 10.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 10.1.1
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 10.1.2
Nhân với .
Bước 10.2
Trừ khỏi .
Bước 11
là một cực đại địa phương vì giá trị của đạo hàm bậc hai âm. Đây được gọi là phép kiểm định đạo hàm bậc hai.
là cực đại địa phương
Bước 12
Tìm giá trị y khi .
Nhấp để xem thêm các bước...
Bước 12.1
Thay thế biến bằng trong biểu thức.
Bước 12.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 12.2.1
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 12.2.2
Trừ khỏi .
Bước 12.2.3
Nâng lên lũy thừa .
Bước 12.2.4
Câu trả lời cuối cùng là .
Bước 13
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 14
Tính đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 14.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 14.1.1
Nâng lên lũy thừa .
Bước 14.1.2
Nhân với .
Bước 14.2
Trừ khỏi .
Bước 15
là một cực tiểu địa phương vì giá trị của đạo hàm bậc hai dương. Đây được gọi là phép kiểm định đạo hàm bậc hai.
là cực tiểu địa phương
Bước 16
Tìm giá trị y khi .
Nhấp để xem thêm các bước...
Bước 16.1
Thay thế biến bằng trong biểu thức.
Bước 16.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 16.2.1
Nâng lên lũy thừa .
Bước 16.2.2
Trừ khỏi .
Bước 16.2.3
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 16.2.4
Câu trả lời cuối cùng là .
Bước 17
Tính đạo hàm bậc hai tại . Nếu đạo hàm bậc hai dương, thì đây là một cực tiểu địa phương. Nếu nó âm, thì đây là một cực đại địa phương.
Bước 18
Tính đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 18.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 18.1.1
Nâng lên lũy thừa .
Bước 18.1.2
Nhân với .
Bước 18.2
Trừ khỏi .
Bước 19
là một cực tiểu địa phương vì giá trị của đạo hàm bậc hai dương. Đây được gọi là phép kiểm định đạo hàm bậc hai.
là cực tiểu địa phương
Bước 20
Tìm giá trị y khi .
Nhấp để xem thêm các bước...
Bước 20.1
Thay thế biến bằng trong biểu thức.
Bước 20.2
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 20.2.1
Nâng lên lũy thừa .
Bước 20.2.2
Trừ khỏi .
Bước 20.2.3
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 20.2.4
Câu trả lời cuối cùng là .
Bước 21
Đây là những cực trị địa phương cho .
là một cực đại địa phuơng
là một cực tiểu địa phương
là một cực tiểu địa phương
Bước 22