Giải tích Ví dụ

Ước tính Giới Hạn giới hạn khi x tiến dần đến pi/2 của (cos(x))/(x-pi/2)
Bước 1
Kết hợp các số hạng.
Nhấp để xem thêm các bước...
Bước 1.1
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 1.2
Kết hợp .
Bước 1.3
Kết hợp các tử số trên mẫu số chung.
Bước 2
Tính giới hạn.
Nhấp để xem thêm các bước...
Bước 2.1
Rút gọn đối số giới hạn.
Nhấp để xem thêm các bước...
Bước 2.1.1
Nhân tử số với nghịch đảo của mẫu số.
Bước 2.1.2
Kết hợp .
Bước 2.2
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 3
Áp dụng quy tắc l'Hôpital
Nhấp để xem thêm các bước...
Bước 3.1
Tính giới hạn của tử số và giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Bước 3.1.1
Lấy giới hạn của tử số và giới hạn của mẫu số.
Bước 3.1.2
Tính giới hạn của tử số.
Nhấp để xem thêm các bước...
Bước 3.1.2.1
Di chuyển giới hạn vào trong hàm lượng giác vì cosin liên tục.
Bước 3.1.2.2
Tính giới hạn của bằng cách điền vào cho .
Bước 3.1.2.3
Giá trị chính xác của .
Bước 3.1.3
Tính giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Bước 3.1.3.1
Tính giới hạn.
Nhấp để xem thêm các bước...
Bước 3.1.3.1.1
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 3.1.3.1.2
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 3.1.3.1.3
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 3.1.3.2
Tính giới hạn của bằng cách điền vào cho .
Bước 3.1.3.3
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 3.1.3.3.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 3.1.3.3.1.1
Triệt tiêu thừa số chung.
Bước 3.1.3.3.1.2
Viết lại biểu thức.
Bước 3.1.3.3.2
Trừ khỏi .
Bước 3.1.3.3.3
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 3.1.3.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 3.1.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 3.2
ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Bước 3.3
Tìm đạo hàm của tử số và mẫu số.
Nhấp để xem thêm các bước...
Bước 3.3.1
Tính đạo hàm tử số và mẫu số.
Bước 3.3.2
Đạo hàm của đối với .
Bước 3.3.3
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 3.3.4
Tính .
Nhấp để xem thêm các bước...
Bước 3.3.4.1
Di chuyển sang phía bên trái của .
Bước 3.3.4.2
không đổi đối với , nên đạo hàm của đối với .
Bước 3.3.4.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 3.3.4.4
Nhân với .
Bước 3.3.5
là hằng số đối với , đạo hàm của đối với .
Bước 3.3.6
Cộng .
Bước 4
Tính giới hạn.
Nhấp để xem thêm các bước...
Bước 4.1
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 4.2
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 4.3
Di chuyển giới hạn vào trong hàm lượng giác vì sin liên tục.
Bước 5
Tính giới hạn của bằng cách điền vào cho .
Bước 6
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 6.1
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 6.1.1
Triệt tiêu thừa số chung.
Bước 6.1.2
Viết lại biểu thức.
Bước 6.2
Nhân với .
Bước 6.3
Giá trị chính xác của .
Bước 6.4
Nhân với .