Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Viết lại ở dạng .
Bước 1.2
Khai triển bằng cách di chuyển ra bên ngoài lôgarit.
Bước 2
Bước 2.1
Đưa giới hạn vào trong số mũ.
Bước 2.2
Kết hợp và .
Bước 3
Bước 3.1
Tính giới hạn của tử số và giới hạn của mẫu số.
Bước 3.1.1
Lấy giới hạn của tử số và giới hạn của mẫu số.
Bước 3.1.2
Tính giới hạn của tử số.
Bước 3.1.2.1
Tính giới hạn.
Bước 3.1.2.1.1
Chuyển giới hạn vào bên trong logarit.
Bước 3.1.2.1.2
Di chuyển giới hạn vào trong hàm lượng giác vì cosin liên tục.
Bước 3.1.2.2
Tính giới hạn của bằng cách điền vào cho .
Bước 3.1.2.3
Rút gọn kết quả.
Bước 3.1.2.3.1
Giá trị chính xác của là .
Bước 3.1.2.3.2
Logarit tự nhiên của là .
Bước 3.1.3
Tính giới hạn của bằng cách điền vào cho .
Bước 3.1.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 3.2
Vì ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Bước 3.3
Tìm đạo hàm của tử số và mẫu số.
Bước 3.3.1
Tính đạo hàm tử số và mẫu số.
Bước 3.3.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng là trong đó và .
Bước 3.3.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 3.3.2.2
Đạo hàm của đối với là .
Bước 3.3.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 3.3.3
Đạo hàm của đối với là .
Bước 3.3.4
Kết hợp và .
Bước 3.3.5
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 3.4
Nhân tử số với nghịch đảo của mẫu số.
Bước 3.5
Nhân với .
Bước 4
Bước 4.1
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 4.2
Tách giới hạn bằng quy tắc thương số của giới hạn trên giới hạn khi tiến dần đến .
Bước 4.3
Di chuyển giới hạn vào trong hàm lượng giác vì sin liên tục.
Bước 4.4
Di chuyển giới hạn vào trong hàm lượng giác vì cosin liên tục.
Bước 5
Bước 5.1
Tính giới hạn của bằng cách điền vào cho .
Bước 5.2
Tính giới hạn của bằng cách điền vào cho .
Bước 6
Bước 6.1
Giá trị chính xác của là .
Bước 6.2
Giá trị chính xác của là .
Bước 6.3
Chia cho .
Bước 6.4
Nhân với .
Bước 6.5
Bất kỳ đại lượng nào mũ lên đều là .