Nhập bài toán...
Giải tích Ví dụ
Bước 1
Bước 1.1
Tính giới hạn của tử số và giới hạn của mẫu số.
Bước 1.1.1
Lấy giới hạn của tử số và giới hạn của mẫu số.
Bước 1.1.2
Tính giới hạn của tử số.
Bước 1.1.2.1
Di chuyển giới hạn vào trong hàm lượng giác vì tang liên tục.
Bước 1.1.2.2
Tính giới hạn của bằng cách điền vào cho .
Bước 1.1.2.3
Giá trị chính xác của là .
Bước 1.1.3
Tính giới hạn của mẫu số.
Bước 1.1.3.1
Đưa số mũ từ ra ngoài giới hạn bằng quy tắc lũy thừa của giới hạn.
Bước 1.1.3.2
Tính giới hạn của bằng cách điền vào cho .
Bước 1.1.3.3
Nâng lên bất kỳ số mũ dương nào sẽ cho .
Bước 1.1.3.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 1.1.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 1.2
Vì ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Bước 1.3
Tìm đạo hàm của tử số và mẫu số.
Bước 1.3.1
Tính đạo hàm tử số và mẫu số.
Bước 1.3.2
Đạo hàm của đối với là .
Bước 1.3.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng là trong đó .
Bước 2
Vì hàm số tiến dần đến từ phía bên trái và từ phía bên phải, nên giới hạn không tồn tại.