Giải tích Ví dụ

Ước tính Giới Hạn giới hạn khi x tiến dần đến 0 của (sin(x))/(3x)+(2x)/(tan(4x))
Bước 1
Tính giới hạn.
Nhấp để xem thêm các bước...
Bước 1.1
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 1.2
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 2
, sử dụng định lý kẹp.
Bước 3
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 4
Áp dụng quy tắc l'Hôpital
Nhấp để xem thêm các bước...
Bước 4.1
Tính giới hạn của tử số và giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Bước 4.1.1
Lấy giới hạn của tử số và giới hạn của mẫu số.
Bước 4.1.2
Tính giới hạn của bằng cách điền vào cho .
Bước 4.1.3
Tính giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Bước 4.1.3.1
Tính giới hạn.
Nhấp để xem thêm các bước...
Bước 4.1.3.1.1
Di chuyển giới hạn vào trong hàm lượng giác vì tang liên tục.
Bước 4.1.3.1.2
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 4.1.3.2
Tính giới hạn của bằng cách điền vào cho .
Bước 4.1.3.3
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 4.1.3.3.1
Nhân với .
Bước 4.1.3.3.2
Giá trị chính xác của .
Bước 4.1.3.3.3
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 4.1.3.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 4.1.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 4.2
ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Bước 4.3
Tìm đạo hàm của tử số và mẫu số.
Nhấp để xem thêm các bước...
Bước 4.3.1
Tính đạo hàm tử số và mẫu số.
Bước 4.3.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 4.3.3
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 4.3.3.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 4.3.3.2
Đạo hàm của đối với .
Bước 4.3.3.3
Thay thế tất cả các lần xuất hiện của với .
Bước 4.3.4
không đổi đối với , nên đạo hàm của đối với .
Bước 4.3.5
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 4.3.6
Nhân với .
Bước 4.3.7
Di chuyển sang phía bên trái của .
Bước 5
Tính giới hạn.
Nhấp để xem thêm các bước...
Bước 5.1
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 5.2
Tách giới hạn bằng quy tắc thương số của giới hạn trên giới hạn khi tiến dần đến .
Bước 5.3
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 5.4
Đưa số mũ từ ra ngoài giới hạn bằng quy tắc lũy thừa của giới hạn.
Bước 5.5
Di chuyển giới hạn vào trong hàm lượng giác vì secant liên tục.
Bước 5.6
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 6
Tính giới hạn của bằng cách điền vào cho .
Bước 7
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 7.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 7.1.1
Nhân với .
Bước 7.1.2
Triệt tiêu thừa số chung .
Nhấp để xem thêm các bước...
Bước 7.1.2.1
Đưa ra ngoài .
Bước 7.1.2.2
Triệt tiêu thừa số chung.
Bước 7.1.2.3
Viết lại biểu thức.
Bước 7.1.3
Kết hợp.
Bước 7.1.4
Nhân với .
Bước 7.1.5
Rút gọn mẫu số.
Nhấp để xem thêm các bước...
Bước 7.1.5.1
Nhân với .
Bước 7.1.5.2
Giá trị chính xác của .
Bước 7.1.5.3
Một mũ bất kỳ số nào là một.
Bước 7.1.6
Nhân với .
Bước 7.2
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 7.3
Để viết ở dạng một phân số với mẫu số chung, hãy nhân với .
Bước 7.4
Viết mỗi biểu thức với mẫu số chung là , bằng cách nhân từng biểu thức với một thừa số thích hợp của .
Nhấp để xem thêm các bước...
Bước 7.4.1
Nhân với .
Bước 7.4.2
Nhân với .
Bước 7.4.3
Nhân với .
Bước 7.4.4
Nhân với .
Bước 7.5
Kết hợp các tử số trên mẫu số chung.
Bước 7.6
Cộng .
Bước 8
Kết quả có thể được hiển thị ở nhiều dạng.
Dạng chính xác:
Dạng thập phân: