Giải tích Ví dụ

Ước tính Giới Hạn giới hạn khi x tiến dần đến 1 của ((8x-4)^2-16)/(4x-4)
Bước 1
Áp dụng quy tắc l'Hôpital
Nhấp để xem thêm các bước...
Bước 1.1
Tính giới hạn của tử số và giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Bước 1.1.1
Lấy giới hạn của tử số và giới hạn của mẫu số.
Bước 1.1.2
Tính giới hạn của tử số.
Nhấp để xem thêm các bước...
Bước 1.1.2.1
Tính giới hạn.
Nhấp để xem thêm các bước...
Bước 1.1.2.1.1
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 1.1.2.1.2
Đưa số mũ từ ra ngoài giới hạn bằng quy tắc lũy thừa của giới hạn.
Bước 1.1.2.1.3
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 1.1.2.1.4
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 1.1.2.1.5
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 1.1.2.1.6
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 1.1.2.2
Tính giới hạn của bằng cách điền vào cho .
Bước 1.1.2.3
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 1.1.2.3.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 1.1.2.3.1.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 1.1.2.3.1.1.1
Nhân với .
Bước 1.1.2.3.1.1.2
Nhân với .
Bước 1.1.2.3.1.2
Trừ khỏi .
Bước 1.1.2.3.1.3
Nâng lên lũy thừa .
Bước 1.1.2.3.1.4
Nhân với .
Bước 1.1.2.3.2
Trừ khỏi .
Bước 1.1.3
Tính giới hạn của mẫu số.
Nhấp để xem thêm các bước...
Bước 1.1.3.1
Tính giới hạn.
Nhấp để xem thêm các bước...
Bước 1.1.3.1.1
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 1.1.3.1.2
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 1.1.3.1.3
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 1.1.3.2
Tính giới hạn của bằng cách điền vào cho .
Bước 1.1.3.3
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 1.1.3.3.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 1.1.3.3.1.1
Nhân với .
Bước 1.1.3.3.1.2
Nhân với .
Bước 1.1.3.3.2
Trừ khỏi .
Bước 1.1.3.3.3
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 1.1.3.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 1.1.4
Biểu thức chứa một phép chia cho . Biểu thức không xác định.
Không xác định
Bước 1.2
ở dạng không xác định, nên ta áp dụng quy tắc L'Hôpital. Quy tắc L'Hôpital khẳng định rằng giới hạn của một thương của các hàm số bằng giới hạn của thương của các đạo hàm của chúng.
Bước 1.3
Tìm đạo hàm của tử số và mẫu số.
Nhấp để xem thêm các bước...
Bước 1.3.1
Tính đạo hàm tử số và mẫu số.
Bước 1.3.2
Viết lại ở dạng .
Bước 1.3.3
Khai triển bằng cách sử dụng Phương pháp FOIL.
Nhấp để xem thêm các bước...
Bước 1.3.3.1
Áp dụng thuộc tính phân phối.
Bước 1.3.3.2
Áp dụng thuộc tính phân phối.
Bước 1.3.3.3
Áp dụng thuộc tính phân phối.
Bước 1.3.4
Rút gọn và kết hợp các số hạng đồng dạng.
Nhấp để xem thêm các bước...
Bước 1.3.4.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 1.3.4.1.1
Viết lại bằng tính chất giao hoán của phép nhân.
Bước 1.3.4.1.2
Nhân với bằng cách cộng các số mũ.
Nhấp để xem thêm các bước...
Bước 1.3.4.1.2.1
Di chuyển .
Bước 1.3.4.1.2.2
Nhân với .
Bước 1.3.4.1.3
Nhân với .
Bước 1.3.4.1.4
Nhân với .
Bước 1.3.4.1.5
Nhân với .
Bước 1.3.4.1.6
Nhân với .
Bước 1.3.4.2
Trừ khỏi .
Bước 1.3.5
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.3.6
Tính .
Nhấp để xem thêm các bước...
Bước 1.3.6.1
không đổi đối với , nên đạo hàm của đối với .
Bước 1.3.6.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.3.6.3
Nhân với .
Bước 1.3.7
Tính .
Nhấp để xem thêm các bước...
Bước 1.3.7.1
không đổi đối với , nên đạo hàm của đối với .
Bước 1.3.7.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.3.7.3
Nhân với .
Bước 1.3.8
là hằng số đối với , đạo hàm của đối với .
Bước 1.3.9
là hằng số đối với , đạo hàm của đối với .
Bước 1.3.10
Kết hợp các số hạng.
Nhấp để xem thêm các bước...
Bước 1.3.10.1
Cộng .
Bước 1.3.10.2
Cộng .
Bước 1.3.11
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.3.12
Tính .
Nhấp để xem thêm các bước...
Bước 1.3.12.1
không đổi đối với , nên đạo hàm của đối với .
Bước 1.3.12.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.3.12.3
Nhân với .
Bước 1.3.13
là hằng số đối với , đạo hàm của đối với .
Bước 1.3.14
Cộng .
Bước 1.4
Triệt tiêu thừa số chung của .
Nhấp để xem thêm các bước...
Bước 1.4.1
Đưa ra ngoài .
Bước 1.4.2
Đưa ra ngoài .
Bước 1.4.3
Đưa ra ngoài .
Bước 1.4.4
Triệt tiêu các thừa số chung.
Nhấp để xem thêm các bước...
Bước 1.4.4.1
Đưa ra ngoài .
Bước 1.4.4.2
Triệt tiêu thừa số chung.
Bước 1.4.4.3
Viết lại biểu thức.
Bước 1.4.4.4
Chia cho .
Bước 2
Tính giới hạn.
Nhấp để xem thêm các bước...
Bước 2.1
Tách giới hạn bằng quy tắc tổng của giới hạn trên giới hạn khi tiến dần đến .
Bước 2.2
Chuyển số hạng ra bên ngoài giới hạn vì nó là đại lượng không đổi đối với .
Bước 2.3
Tính giới hạn của mà không đổi khi tiến dần đến .
Bước 3
Tính giới hạn của bằng cách điền vào cho .
Bước 4
Rút gọn kết quả.
Nhấp để xem thêm các bước...
Bước 4.1
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 4.1.1
Nhân với .
Bước 4.1.2
Nhân với .
Bước 4.2
Trừ khỏi .