Giải tích Ví dụ

Tìm Đạo Hàm 2nd y=(3x-2)/(2x+1)
Bước 1
Tìm đạo hàm bậc một.
Nhấp để xem thêm các bước...
Bước 1.1
Tìm đạo hàm bằng cách sử dụng quy tắc thương số, quy tắc nói rằng trong đó .
Bước 1.2
Tìm đạo hàm.
Nhấp để xem thêm các bước...
Bước 1.2.1
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.2.2
không đổi đối với , nên đạo hàm của đối với .
Bước 1.2.3
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.2.4
Nhân với .
Bước 1.2.5
là hằng số đối với , đạo hàm của đối với .
Bước 1.2.6
Rút gọn biểu thức.
Nhấp để xem thêm các bước...
Bước 1.2.6.1
Cộng .
Bước 1.2.6.2
Di chuyển sang phía bên trái của .
Bước 1.2.7
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 1.2.8
không đổi đối với , nên đạo hàm của đối với .
Bước 1.2.9
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 1.2.10
Nhân với .
Bước 1.2.11
là hằng số đối với , đạo hàm của đối với .
Bước 1.2.12
Rút gọn biểu thức.
Nhấp để xem thêm các bước...
Bước 1.2.12.1
Cộng .
Bước 1.2.12.2
Nhân với .
Bước 1.3
Rút gọn.
Nhấp để xem thêm các bước...
Bước 1.3.1
Áp dụng thuộc tính phân phối.
Bước 1.3.2
Áp dụng thuộc tính phân phối.
Bước 1.3.3
Rút gọn tử số.
Nhấp để xem thêm các bước...
Bước 1.3.3.1
Kết hợp các số hạng đối nhau trong .
Nhấp để xem thêm các bước...
Bước 1.3.3.1.1
Sắp xếp lại các thừa số trong các số hạng .
Bước 1.3.3.1.2
Trừ khỏi .
Bước 1.3.3.1.3
Cộng .
Bước 1.3.3.2
Rút gọn mỗi số hạng.
Nhấp để xem thêm các bước...
Bước 1.3.3.2.1
Nhân với .
Bước 1.3.3.2.2
Nhân với .
Bước 1.3.3.3
Cộng .
Bước 2
Tìm đạo hàm bậc hai.
Nhấp để xem thêm các bước...
Bước 2.1
Tìm đạo hàm bằng cách sử dụng Quy tắc nhân với hằng số.
Nhấp để xem thêm các bước...
Bước 2.1.1
không đổi đối với , nên đạo hàm của đối với .
Bước 2.1.2
Áp dụng các quy tắc số mũ cơ bản.
Nhấp để xem thêm các bước...
Bước 2.1.2.1
Viết lại ở dạng .
Bước 2.1.2.2
Nhân các số mũ trong .
Nhấp để xem thêm các bước...
Bước 2.1.2.2.1
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 2.1.2.2.2
Nhân với .
Bước 2.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 2.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 2.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 2.3
Tìm đạo hàm.
Nhấp để xem thêm các bước...
Bước 2.3.1
Nhân với .
Bước 2.3.2
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 2.3.3
không đổi đối với , nên đạo hàm của đối với .
Bước 2.3.4
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 2.3.5
Nhân với .
Bước 2.3.6
là hằng số đối với , đạo hàm của đối với .
Bước 2.3.7
Rút gọn biểu thức.
Nhấp để xem thêm các bước...
Bước 2.3.7.1
Cộng .
Bước 2.3.7.2
Nhân với .
Bước 2.4
Rút gọn.
Nhấp để xem thêm các bước...
Bước 2.4.1
Viết lại biểu thức bằng quy tắc số mũ âm .
Bước 2.4.2
Kết hợp các số hạng.
Nhấp để xem thêm các bước...
Bước 2.4.2.1
Kết hợp .
Bước 2.4.2.2
Di chuyển dấu trừ ra phía trước của phân số.
Bước 3
Tìm đạo hàm bậc 3.
Nhấp để xem thêm các bước...
Bước 3.1
Tìm đạo hàm bằng cách sử dụng Quy tắc nhân với hằng số.
Nhấp để xem thêm các bước...
Bước 3.1.1
không đổi đối với , nên đạo hàm của đối với .
Bước 3.1.2
Áp dụng các quy tắc số mũ cơ bản.
Nhấp để xem thêm các bước...
Bước 3.1.2.1
Viết lại ở dạng .
Bước 3.1.2.2
Nhân các số mũ trong .
Nhấp để xem thêm các bước...
Bước 3.1.2.2.1
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 3.1.2.2.2
Nhân với .
Bước 3.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 3.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 3.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 3.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 3.3
Tìm đạo hàm.
Nhấp để xem thêm các bước...
Bước 3.3.1
Nhân với .
Bước 3.3.2
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 3.3.3
không đổi đối với , nên đạo hàm của đối với .
Bước 3.3.4
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 3.3.5
Nhân với .
Bước 3.3.6
là hằng số đối với , đạo hàm của đối với .
Bước 3.3.7
Rút gọn biểu thức.
Nhấp để xem thêm các bước...
Bước 3.3.7.1
Cộng .
Bước 3.3.7.2
Nhân với .
Bước 3.4
Rút gọn.
Nhấp để xem thêm các bước...
Bước 3.4.1
Viết lại biểu thức bằng quy tắc số mũ âm .
Bước 3.4.2
Kết hợp .
Bước 4
Tìm đạo hàm bậc 4.
Nhấp để xem thêm các bước...
Bước 4.1
Tìm đạo hàm bằng cách sử dụng Quy tắc nhân với hằng số.
Nhấp để xem thêm các bước...
Bước 4.1.1
không đổi đối với , nên đạo hàm của đối với .
Bước 4.1.2
Áp dụng các quy tắc số mũ cơ bản.
Nhấp để xem thêm các bước...
Bước 4.1.2.1
Viết lại ở dạng .
Bước 4.1.2.2
Nhân các số mũ trong .
Nhấp để xem thêm các bước...
Bước 4.1.2.2.1
Áp dụng quy tắc lũy thừa và nhân các số mũ với nhau, .
Bước 4.1.2.2.2
Nhân với .
Bước 4.2
Tìm đạo hàm bằng cách sử dụng quy tắc chuỗi, quy tắc nói rằng trong đó .
Nhấp để xem thêm các bước...
Bước 4.2.1
Để áp dụng quy tắc chuỗi, thiết lập ở dạng .
Bước 4.2.2
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 4.2.3
Thay thế tất cả các lần xuất hiện của với .
Bước 4.3
Tìm đạo hàm.
Nhấp để xem thêm các bước...
Bước 4.3.1
Nhân với .
Bước 4.3.2
Theo Quy tắc tổng, đạo hàm của đối với .
Bước 4.3.3
không đổi đối với , nên đạo hàm của đối với .
Bước 4.3.4
Tìm đạo hàm bằng cách sử dụng Quy tắc lũy thừa, quy tắc nói rằng trong đó .
Bước 4.3.5
Nhân với .
Bước 4.3.6
là hằng số đối với , đạo hàm của đối với .
Bước 4.3.7
Rút gọn biểu thức.
Nhấp để xem thêm các bước...
Bước 4.3.7.1
Cộng .
Bước 4.3.7.2
Nhân với .
Bước 4.4
Rút gọn.
Nhấp để xem thêm các bước...
Bước 4.4.1
Viết lại biểu thức bằng quy tắc số mũ âm .
Bước 4.4.2
Kết hợp các số hạng.
Nhấp để xem thêm các bước...
Bước 4.4.2.1
Kết hợp .
Bước 4.4.2.2
Di chuyển dấu trừ ra phía trước của phân số.